Asymmetric Composition of Possibilistic Operators in Formal Concept Analysis: Application to the Extraction of Attribute Implications from Incomplete Contexts

Formal concept analysis theory (FCA) classically relies on the use of the Galois powerset operator. Formal similarities between possibility theory and formal concept analysis have led to the use of possibilistic operators in FCA, which were ignored before. In this paper, an approach based on the use of asymmetric composition of the two most usual possibilistic operators is proposed. It enables us to complement the stem base, by deriving attribute implications with disjunctions on both sides of the implications. Besides, the approach is also generalized to incomplete contexts involving explicit positive and negative information. We outline the potential application of these results to the completion of TBoxes in description logic.

[1]  Didier Dubois,et al.  Formal Concept Analysis from the Standpoint of Possibility Theory , 2015, ICFCA.

[2]  Henri Prade,et al.  Possibility-theoretic extension of derivation operators in formal concept analysis over fuzzy lattices , 2011, Fuzzy Optim. Decis. Mak..

[3]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[4]  Didier Dubois,et al.  A Possibility-Theoretic View of Formal Concept Analysis , 2007, Fundam. Informaticae.

[5]  Yassine Djouadi,et al.  Generating GCIs Axioms from Objects Descriptions in -Description Logics , 2013, Modeling Approaches and Algorithms for Advanced Computer Applications.

[6]  Jean-Gabriel Ganascia,et al.  Completing Terminological Axioms with Formal Concept Analysis , 2012 .

[7]  Didier Dubois,et al.  Possibility Theory and Formal Concept Analysis in Information Systems , 2009, IFSA/EUSFLAT Conf..

[8]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[9]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[10]  Sebastian Rudolph,et al.  Exploring Relational Structures Via FLE , 2004, ICCS.

[11]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[12]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[13]  Yiyu Yao,et al.  Rough set approximations in formal concept analysis , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[14]  Ivo Düntsch,et al.  Approximation Operators in Qualitative Data Analysis , 2003, Theory and Applications of Relational Structures as Knowledge Instruments.

[15]  Chris Cornelis,et al.  35 Years of Fuzzy Set Theory - Celebratory Volume Dedicated to the Retirement of Etienne E. Kerre , 2011, Studies in Fuzziness and Soft Computing.

[16]  Ivo Düntsch,et al.  Beyond modalities: sufficiency and mixed algebras , 2001 .

[17]  Didier Dubois,et al.  An overview of the asymmetric bipolar representation of positive and negative information in possibility theory , 2009, Fuzzy Sets Syst..

[18]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .

[19]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[20]  Bernhard Ganter,et al.  Attribute Exploration with Background Knowledge , 1999, Theor. Comput. Sci..

[21]  Franz Baader,et al.  Applying Formal Concept Analysis to Description Logics , 2004, ICFCA.

[22]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[23]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[24]  Ivo Düntsch,et al.  MIXING MODAL AND SUFFICIENCY OPERATORS , 1999 .

[25]  Ivo Düntsch,et al.  Modal-style operators in qualitative data analysis , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[26]  Franz Baader,et al.  Exploring Finite Models in the Description Logic , 2009, ICFCA.

[27]  Felix Distel,et al.  Exploring Finite Models in the Description Logic ELgfp , 2009 .

[28]  Richard Holzer,et al.  Treating Incomplete Knowledge in Formal Concept Analysis , 2005, Formal Concept Analysis.

[29]  Didier Dubois,et al.  Graduality, Uncertainty and Typicality in Formal Concept Analysis , 2010, 35 Years of Fuzzy Set Theory.

[30]  Sergei A. Obiedkov,et al.  Modal Logic for Evaluating Formulas in Incomplete Contexts , 2002, ICCS.

[31]  Henri Prade,et al.  From a Possibility Theory View of Formal Concept Analysis to the Possibilistic Handling of Incomplete and Uncertain Contexts , 2016, FCA4AI@ECAI.

[32]  Tinko Tinchev,et al.  Modal Environment for Boolean Speculations , 1987 .

[33]  Guilin Qi,et al.  A Possibilistic Extension of Description Logics , 2007, Description Logics.

[34]  Rokia Missaoui,et al.  Generating Positive and Negative Exact Rules Using Formal Concept Analysis: Problems and Solutions , 2008, ICFCA.

[35]  F. Baader Computing a Minimal Representation of the Subsumption Lattice of All Conjunctions of Concepts De ned in a Terminology ? , 1995 .

[36]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[37]  Rokia Missaoui,et al.  Computing Implications with Negation from a Formal Context , 2012, Fundam. Informaticae.