Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization

We discuss desirable features that optimization algorithms should possess to exhibit good empirical performance when applied to solve simulation optimization problems possessing little known structure. Our framework emphasizes maintaining an appropriate balance between exploration, exploitation, and estimation. With the exception of estimation, our ideas are also applicable in (unstructured) deterministic optimization. Exploration refers to (globally) searching the entire feasible region for promising solutions, exploitation refers to the (local) search for improved solutions in promising subregions, and estimation refers to obtaining enhanced estimates of the objective function values at promising solutions and of the optimal solution. We also present two new random search methods that possess these desirable features, prove their almost-sure global convergence, and provide preliminary numerical results that suggest that the proposed framework is promising from a practical point of view.

[1]  Fred W. Glover,et al.  Simulation optimization: a review, new developments, and applications , 2005, Proceedings of the Winter Simulation Conference, 2005..

[2]  Sigrún Andradóttir,et al.  Accelerating the convergence of random search methods for discrete stochastic optimization , 1999, TOMC.

[3]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[4]  Yu-Chi Ho,et al.  Stochastic Comparison Algorithm for Discrete Optimization with Estimation , 1999, SIAM J. Optim..

[5]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[6]  Michael C. Fu,et al.  Feature Article: Optimization for simulation: Theory vs. Practice , 2002, INFORMS J. Comput..

[7]  Sigurdur Olafsson,et al.  Simulation optimization , 2002, Proceedings of the Winter Simulation Conference.

[8]  Stephen E. Chick,et al.  New Two-Stage and Sequential Procedures for Selecting the Best Simulated System , 2001, Oper. Res..

[9]  Tito Homem-de-Mello,et al.  Variable-sample methods for stochastic optimization , 2003, TOMC.

[10]  Barry L. Nelson,et al.  A combined procedure for optimization via simulation , 2002, Proceedings of the Winter Simulation Conference.

[11]  Barry L. Nelson,et al.  The tradeoff between sampling and switching: New sequential procedures for indifference-zone selection , 2005 .

[12]  B. S Simulated Annealing with Noisy or Imprecise Energy Measurements , 2004 .

[13]  Talal M. Alkhamis,et al.  Simulation-based optimization using simulated annealing with ranking and selection , 2002, Comput. Oper. Res..

[14]  D. Yan,et al.  Stochastic discrete optimization , 1992 .

[15]  Mahmoud H. Alrefaei,et al.  A modification of the stochastic ruler method for discrete stochastic optimization , 2001, Eur. J. Oper. Res..

[16]  B. Fox,et al.  Probabilistic Search with Overrides , 1995 .

[17]  S. Andradóttir A method for discrete stochastic optimization , 1995 .

[18]  Luc Devroye Probabilistic Search as a Strategy Selection Procedure , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Luc Devroye,et al.  On the Convergence of Statistical Search , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Sigrún Andradóttir,et al.  Simulation optimization using balanced explorative and exploitative search , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[21]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[22]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[23]  Leyuan Shi,et al.  Nested Partitions Method for Stochastic Optimization , 2000 .

[24]  Sigrún Andradóttir,et al.  Chapter 20 An Overview of Simulation Optimization via Random Search , 2006, Simulation.

[25]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[26]  Chun-Hung Chen,et al.  New development of optimal computing budget allocation for discrete event simulation , 1997, WSC '97.

[27]  Ix,et al.  A Class of Optimal Performance Directed Probabilistic , 1976 .

[28]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[29]  Barry L. Nelson,et al.  Discrete Optimization via Simulation Using COMPASS , 2006, Oper. Res..

[30]  Sigrún Andradóttir,et al.  A review of simulation optimization techniques , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[31]  Sigrún Andradóttir,et al.  Simulation optimization with countably infinite feasible regions: Efficiency and convergence , 2006, TOMC.

[32]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[33]  Mahmoud H. Alrefaei,et al.  Discrete stochastic optimization using variants of the stochastic ruler method , 2005 .

[34]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[35]  E. Lugosi,et al.  Random Search in the Presence of Noise, with Application to Machine Learning , 1990, SIAM J. Sci. Comput..

[36]  Dirk P. Kroese,et al.  Cross‐Entropy Method , 2011 .