Low-Frequency Vibration Sensor with a Sub-nm Sensitivity Using a Bidomain Lithium Niobate Crystal

We present a low-frequency sensor for the detection of vibrations, with a sub-nm amplitude, based on a cantilever made of a single-crystalline lithium niobate (LiNbO3) plate, with a bidomain ferroelectric structure. The sensitivity of the sensor-to-sinusoidal vibrational excitations was measured in terms of displacement as well as of acceleration amplitude. We show a linear behavior of the response, with the vibrational displacement amplitude in the entire studied frequency range up to 150 Hz. The sensitivity of the developed sensor varies from minimum values of 20 μV/nm and 7 V/g (where g = 9.81 m/s2 is the gravitational acceleration), at a frequency of 23 Hz, to peak values of 92.5 mV/nm and 2443 V/g, at the mechanical resonance of the cantilever at 97.25 Hz. The smallest detectable vibration depended on the excitation frequency and varied from 100 nm, at 7 Hz, to 0.1 nm, at frequencies above 38 Hz. Sensors using bidomain lithium niobate single crystals, as sensitive elements, are promising for the detection of ultra-weak low-frequency vibrations in a wide temperature range and in harsh environments.

[1]  Xinxin Li,et al.  A self-powered wireless sensing node for event-driven alerting based on a bi-stable vibration energy harvester , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[2]  Joseph L. Rose,et al.  Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring , 2007 .

[3]  A. Kholkin,et al.  Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields , 2018, Applied Physics Letters.

[4]  Manfred Kahn,et al.  The development of high-sensitivity, low-noise accelerometers utilizing single crystal piezoelectric materials , 2001 .

[5]  I. Kubasov,et al.  Application of Radioactive Isotopes for Beta-Voltaic Generators , 2017 .

[6]  Xianmin Zhang,et al.  Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate , 2007 .

[7]  Gabriele Comanducci,et al.  Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis , 2016 .

[8]  Ipek Basdogan,et al.  A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers , 2015 .

[9]  Shujun Zhang,et al.  Piezoelectric Materials for High Temperature Sensors , 2011 .

[10]  Jiachou Wang,et al.  Sub-g weak-vibration-triggered high-efficiency energy harvesting for event identification , 2018 .

[11]  Andres F. Arrieta,et al.  An experimentally validated double-mass piezoelectric cantilever model for broadband vibration–based energy harvesting , 2012 .

[12]  Qing-Ming Wang,et al.  Transient response of piezoelectric thin-film vibration sensor under pulse excitation , 2006 .

[13]  A. Kholkin,et al.  Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars , 2018 .

[15]  Rahul Vaish,et al.  Active vibration control of space antenna reflector over wide temperature range , 2015 .

[16]  V. M. Mecea,et al.  Loaded vibrating quartz sensors , 1994 .

[17]  Tomoaki Yamada,et al.  Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals , 1967 .

[18]  Morito Akiyama,et al.  Ultrahigh temperature vibration sensors using aluminum nitride thin films and W /Ru multilayer electrodes , 2005 .

[19]  Hejun Du,et al.  A ZnO thin-film driven microcantilever for nanoscale actuation and sensing , 2013 .

[20]  Lifeng Qin,et al.  Piezoelectric PZT fiber composite as a low frequency vibration sensor , 2013, 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM).

[21]  Joseph Johnson,et al.  High-Temperature Piezoelectric Sensing , 2013, Sensors.

[22]  C. Lucat,et al.  Longitudinal vibration mode of piezoelectric thick-film cantilever-based sensors in liquid media , 2010 .

[23]  Hongen Tu,et al.  Low-frequency vibration sensors based on a cascaded gapped cantilever , 2016 .

[24]  Hiroshi Shimizu,et al.  Partial Domain Inversion in LiNbO3Plates and its Applications to Piezoelectric Devices , 1986, IEEE 1986 Ultrasonics Symposium.

[25]  S. Alkoy,et al.  Piezoelectric Sensors and Sensor Materials , 1998 .

[26]  A. Kholkin,et al.  Equivalent Magnetic Noise in Magnetoelectric Laminates Comprising Bidomain LiNbO3 Crystals , 2017, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[27]  Y. Parkhomenko,et al.  Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing , 2016 .

[28]  I. Kubasov,et al.  Deformation Anisotropy of Y + 128°-Cut Single Crystalline Bidomain Wafers of Lithium Niobate , 2017 .

[29]  I. Kubasov,et al.  Formation of bidomain structure in lithium niobate plates by the stationary external heating method , 2014 .

[30]  Wei Song,et al.  The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications , 2019, Journal of Materiomics.

[31]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[32]  G. Rosenman,et al.  Domain inversion in heat‐treated LiNbO3 crystals , 1993 .

[33]  Soeren Hirsch,et al.  Evaluation of langasite (La3Ga5SiO14) as a material for high temperature microsystems , 2006 .

[34]  M. Malinkovich,et al.  An electromechanical x-ray optical element based on a hysteresis-free monolithic bimorph crystal , 2016 .

[35]  Tsukasa Funasaka,et al.  Piezoelectric Generator Using a LiNbO , Plate with an Inverted Domain , 2004 .

[36]  Vibrational Power Harvester Based on Lithium Niobate Bidomain Plate , 2018, Acta Physica Polonica A.

[37]  K. Nassau,et al.  THE DOMAIN STRUCTURE AND ETCHING OF FERROELECTRIC LITHIUM NIOBATE , 1965 .

[38]  V. V. Antipov,et al.  Formation of Bidomain Structure in Lithium Niobate Single Crystals by Electrothermal Method , 2008 .

[39]  Xiaoning Jiang,et al.  Design, fabrication and characterization of high temperature piezoelectric vibration sensor using YCOB crystals , 2012 .

[40]  K. Nakamura,et al.  Piezoelectric generator using a LiNbO/sub 3/ plate with an inverted domain , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[41]  Aifang Yu,et al.  Nanogenerator as self-powered vibration sensor , 2012 .

[42]  R. Newnham,et al.  Materials for high temperature acoustic and vibration sensors: A review , 1994 .

[43]  Hiroshi Shimizu,et al.  Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment , 1987 .

[44]  G. Rosenman,et al.  Diffusion-induced domain inversion in ferroelectrics , 1995 .

[45]  H. Shimizu,et al.  Bending Vibrator Consisting of a LiNbO3 Plate with a Ferroelectric Inversion Layer , 1987 .

[46]  Jerome P. Lynch,et al.  A summary review of wireless sensors and sensor networks for structural health monitoring , 2006 .

[47]  K. Nakamura,et al.  Torsional Actuators Using LiNbO3 Plates with an Inversion Layer , 1993 .

[48]  F. S. Welsh,et al.  Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate , 1971 .

[49]  Koichiro Nakamura,et al.  Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer , 1989 .

[50]  Y. Parkhomenko,et al.  Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing , 2015 .

[51]  D. J. Inman,et al.  Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[52]  Zhou Wan,et al.  PVDF Piezoelectric Film Accelerometer for Low Frequency and Ultra-Low Frequency , 2011 .

[53]  S. Egusa,et al.  Piezoelectric paints: preparation and application as built-in vibration sensors of structural materials , 1993, Journal of Materials Science.

[54]  T. Morita,et al.  Non-hysteresis and perfect linear piezoelectric performance of a multilayered lithium niobate actuator , 2007 .

[55]  Ser Tong Quek,et al.  Vibration control of smart piezoelectric composite plates , 2001 .

[56]  Wen Wang,et al.  A Novel Wireless and Temperature-Compensated SAW Vibration Sensor , 2014, Sensors.