Semantic information, autonomous agency and non-equilibrium statistical physics

Shannon information theory provides various measures of so-called syntactic information, which reflect the amount of statistical correlation between systems. By contrast, the concept of ‘semantic information’ refers to those correlations which carry significance or ‘meaning’ for a given system. Semantic information plays an important role in many fields, including biology, cognitive science and philosophy, and there has been a long-standing interest in formulating a broadly applicable and formal theory of semantic information. In this paper, we introduce such a theory. We define semantic information as the syntactic information that a physical system has about its environment which is causally necessary for the system to maintain its own existence. ‘Causal necessity’ is defined in terms of counter-factual interventions which scramble correlations between the system and its environment, while ‘maintaining existence’ is defined in terms of the system's ability to keep itself in a low entropy state. We also use recent results in non-equilibrium statistical physics to analyse semantic information from a thermodynamic point of view. Our framework is grounded in the intrinsic dynamics of a system coupled to an environment, and is applicable to any physical system, living or otherwise. It leads to formal definitions of several concepts that have been intuitively understood to be related to semantic information, including ‘value of information’, ‘semantic content’ and ‘agency’.

[1]  F. Schlögl,et al.  Thermodynamic metric and stochastic measures , 1985 .

[2]  D. Blackwell Equivalent Comparisons of Experiments , 1953 .

[3]  J. Wilson Sex and Death: An Introduction to Philosophy of Biology , 2000 .

[4]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[6]  J. Waller,et al.  Mind in Life: Biology, Phenomenology, and the Sciences of Mind , 2009 .

[7]  M. Esposito,et al.  Three faces of the second law. I. Master equation formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[9]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[10]  Thomas Martinetz,et al.  An Information-Theoretic Approach for the Quantification of Relevance , 2001, ECAL.

[11]  J. Collier Intrinsic Information , 1990 .

[12]  Randall D. Beer,et al.  The Structure of Ontogenies in a Model Protocell , 2016, Artificial Life.

[13]  Peter A. Corning,et al.  Thermodynamics, information and life revisited, Part II: ‘Thermoeconomics’ and ‘Control information’ , 1998 .

[14]  Pattie Maes,et al.  Designing autonomous agents: Theory and practice from biology to engineering and back , 1990, Robotics Auton. Syst..

[15]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Daniel Polani,et al.  Action and perception for spatiotemporal patterns , 2017, ECAL.

[17]  David H. Wolpert,et al.  Extending Landauer's Bound from Bit Erasure to Arbitrary Computation , 2015, 1508.05319.

[18]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[19]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[20]  Cliff Hooker,et al.  Complexly Organised Dynamical Systems , 1999 .

[21]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[22]  Henrik Sandberg,et al.  Second-law-like inequalities with information and their interpretations , 2014, 1409.5351.

[23]  Karl J. Friston,et al.  Free-energy and the brain , 2007, Synthese.

[24]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[25]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[26]  Henrik Sandberg,et al.  Finite State Markov Decision Processes with Transfer Entropy Costs , 2017, ArXiv.

[27]  Claude E. Shannon,et al.  A Note on a Partial Ordering for Communication Channels , 1958, Information and Control.

[28]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[29]  Stuart Kauffman,et al.  Molecular autonomous agents , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Jaakko Hintikka,et al.  On Semantic Information , 1970 .

[31]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[32]  Carlos Gershenson,et al.  Living is Information Processing: From Molecules to Global Systems , 2012, Acta Biotheoretica.

[33]  Carl T. Bergstrom,et al.  The fitness value of information , 2005, Oikos.

[34]  D. Dennett Intentional systems in cognitive ethology: The “Panglossian paradigm” defended , 1983, Behavioral and Brain Sciences.

[35]  Tom Ziemke,et al.  Enactive artificial intelligence: Investigating the systemic organization of life and mind , 2009, Artif. Intell..

[36]  David Balduzzi,et al.  Detecting emergent processes in cellular automata with excess information , 2011, ECAL.

[37]  Eckehard Olbrich,et al.  Coarse-Graining and the Blackwell Order , 2017, Entropy.

[38]  Naftali Tishby,et al.  A Unified Bellman Equation for Causal Information and Value in Markov Decision Processes , 2017, ArXiv.

[39]  L. Steels Evolving grounded communication for robots , 2003, Trends in Cognitive Sciences.

[40]  Yoash Shapira,et al.  Seeking the foundations of cognition in bacteria: From Schrödinger's negative entropy to latent information , 2006 .

[41]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Alexei A. Sharov,et al.  Functional Information: Towards Synthesis of Biosemiotics and Cybernetics , 2010, Entropy.

[43]  E. D. Weinberger,et al.  A theory of pragmatic information and its application to the quasi-species model of biological evolution. , 2001, Bio Systems.

[44]  Daniel Polani,et al.  Information Flows in Causal Networks , 2008, Adv. Complex Syst..

[45]  Chrystopher L. Nehaniv,et al.  Relevant information in optimized persistence vs. progeny strategies , 2006 .

[46]  Kepa Ruiz-Mirazo,et al.  Basic Autonomy as a Fundamental Step in the Synthesis of Life , 2004, Artificial Life.

[47]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[48]  J. Collier INFORMATION IN BIOLOGICAL SYSTEMS , 2008 .

[49]  B. Schmittmann,et al.  Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states , 2007 .

[50]  M. Feito,et al.  Thermodynamics of feedback controlled systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  T. Munakata,et al.  Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited , 2012, 1202.0974.

[52]  Jack A. Tuszynski,et al.  Self-organization and entropy reduction in a living cell , 2013, Biosyst..

[53]  J. P. Gould Risk, stochastic preference, and the value of information , 1974 .

[54]  D. Kamenski,et al.  Symmetry and information content of chemical structures , 1976 .

[55]  M. Esposito,et al.  Three faces of the second law. II. Fokker-Planck formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[58]  Eckehard Olbrich,et al.  Quantifying unique information , 2013, Entropy.

[59]  Kenneth L. Artis Design for a Brain , 1961 .

[60]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[61]  Nicholas Shea,et al.  Representation in the genome and in other inheritance systems , 2007 .

[62]  Hong Qian,et al.  Fluctuation theorems for a molecular refrigerator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Xabier E. Barandiaran,et al.  Defining Agency: Individuality, Normativity, Asymmetry, and Spatio-temporality in Action , 2009, Adapt. Behav..

[64]  Stevan Harnad The Symbol Grounding Problem , 1999, ArXiv.

[65]  Gernot Schaller,et al.  Stochastic thermodynamics for “Maxwell demon” feedbacks , 2012, 1204.5671.

[66]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[67]  J. D. Hess,et al.  Risk and the gain from information , 1982 .

[68]  Alvaro Moreno,et al.  Agency in Natural and Artificial Systems , 2005, Artificial Life.

[69]  Randall D. Beer,et al.  Exploring the Space of Viable Configurations in a Model of Metabolism–Boundary Co-construction , 2016, Artificial Life.

[70]  L. Brillouin Life, thermodynamics, and cybernetics. , 1949, American scientist.

[71]  Terrence W. Deacon,et al.  Shannon - Boltzmann — Darwin: Redefining information (Part II) , 2008 .

[72]  Susanne Still Thermodynamic cost and benefit of data representations , 2017 .

[73]  Tsachy Weissman,et al.  Justification of logarithmic loss via the benefit of side information , 2014, ISIT.

[74]  Joseph T. Lizier,et al.  Measuring the Dynamics of Information Processing on a Local Scale in Time and Space , 2014 .

[75]  Rajai Nasser,et al.  A characterization of the Shannon ordering of communication channels , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[76]  Gerlof Bouma,et al.  Normalized (pointwise) mutual information in collocation extraction , 2009 .

[77]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[78]  Masahito Ueda,et al.  Second Law of Thermodynamics with Discrete Quantum Feedback Control , 2009 .

[79]  A. Wehrl General properties of entropy , 1978 .

[80]  When is a bit worth much more than kT ln2 , 2017, 1705.09598.

[81]  Mikhail Prokopenko,et al.  On Thermodynamic Interpretation of Transfer Entropy , 2013, Entropy.

[82]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[84]  Christoph Adami,et al.  Information theory in molecular biology , 2004, q-bio/0405004.

[85]  Chris Melhuish,et al.  Energetically autonomous robots: Food for thought , 2006, Auton. Robots.

[86]  M. L. Rosinberg,et al.  Feedback cooling, measurement errors, and entropy production , 2013 .

[87]  Sean Alan Ali,et al.  Thermodynamic aspects of information transfer in complex dynamical systems. , 2016, Physical review. E.

[88]  M. Degroot Uncertainty, Information, and Sequential Experiments , 1962 .

[89]  C. Maes,et al.  Life efficiency does not always increase with the dissipation rate , 2017, 1707.09614.

[90]  Mikhail Prokopenko,et al.  Transfer entropy in physical systems and the arrow of time. , 2016, Physical review. E.

[91]  Paul M. B. Vitányi,et al.  Meaningful Information , 2001, IEEE Transactions on Information Theory.

[92]  Harold J. Morowitz,et al.  Some order-disorder considerations in living systems , 1955 .

[93]  Peter Godfrey-Smith,et al.  Information in Biology , 2007 .

[94]  Daniel Polani,et al.  Meaningful Information, Sensor Evolution, and the Temporal Horizon of Embodied Organisms , 2002 .

[95]  Jeremy L. England,et al.  Minimum energetic cost to maintain a target nonequilibrium state. , 2017, Physical review. E.

[96]  Peter A. Corning,et al.  “Control information”: The missing element in Norbert Wiener’s cybernetic paradigm? , 2001 .

[97]  E. Bauer Die Definition des Lebewesens auf Grund seiner thermodynamischen Eigenschaften und die daraus folgenden biologischen Grundprinzipien , 1920, Naturwissenschaften.

[98]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[99]  M. Ponmurugan Generalized detailed fluctuation theorem under nonequilibrium feedback control. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[101]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[102]  Daniel Polani,et al.  Information: Currency of life? , 2009, HFSP journal.

[103]  Eckehard Olbrich,et al.  The information theory of individuality , 2014, Theory in Biosciences.

[104]  H. Atlan Self creation of meaning , 1987 .

[105]  Daniel Polani,et al.  Towards information based spatiotemporal patterns as a foundation for agent representation in dynamical systems , 2016, ALIFE.

[106]  Rajai Nasser,et al.  On the input-degradedness and input-equivalence between channels , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[107]  J Barham,et al.  A dynamical model of the meaning of information. , 1996, Bio Systems.

[108]  David Wolpert,et al.  The thermodynamic efficiency of computations made in cells across the range of life , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[109]  Chrystopher L. Nehaniv Meaning for observers and agents , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[110]  Armen E. Allahverdyan,et al.  Thermodynamic efficiency of information and heat flow , 2009, 0907.3320.

[111]  Xabier E. Barandiaran,et al.  Quantifying normative behaviour and precariousness in adaptive agency , 2011, ECAL.

[112]  D. Krakauer Darwinian demons, evolutionary complexity, and information maximization. , 2011, Chaos.

[113]  A. Moreno,et al.  An Organizational Account of Biological Functions , 2009, The British Journal for the Philosophy of Science.

[114]  Stanley J. Rosenschein,et al.  A dynamical systems perspective on agent-environment interaction , 1996 .

[115]  Gerhard Schlosser,et al.  Self-re-Production and Functionality , 1998, Synthese.

[116]  Peter H. Salus,et al.  Language, Thought, and Other Biological Categories: New Foundations for Realism , 1987 .

[117]  E. D. Paolo,et al.  Autopoiesis, Adaptivity, Teleology, Agency , 2005 .

[118]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[119]  J. Koski,et al.  Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. , 2014, Physical review letters.

[120]  Luciano Floridi,et al.  Semantic conceptions of information , 2005 .

[121]  Jordan M. Horowitz,et al.  Thermodynamics with Continuous Information Flow , 2014, 1402.3276.

[122]  E. Thompson,et al.  Making Sense of Sense-Making: Reflections on Enactive and Extended Mind Theories , 2009 .

[123]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013 .

[124]  S. J. Kline,et al.  Thermodynamics, information and life revisited, Part I: ‘To be or entropy’ , 1998 .

[125]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[126]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[127]  E. D. Schneider,et al.  Life as a manifestation of the second law of thermodynamics , 1994 .

[128]  Lauren M. Huyett,et al.  Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms , 2014, Diabetes Care.

[129]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[130]  B. Brookes,et al.  Biological information , 1974, Nature.

[131]  J. Horowitz Multipartite information flow for multiple Maxwell demons , 2015, 1501.05549.

[132]  Sosuke Ito,et al.  Information thermodynamics on causal networks. , 2013, Physical review letters.

[133]  Measure of the violation of the detailed balance criterion: a possible definition of a "distance" from equilibrium. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  Kim Sterelny,et al.  Sex and Death. An Introduction to Philosophy of Biology (M. Matthen) , 1999 .

[135]  T. Sagawa Thermodynamic and logical reversibilities revisited , 2013, 1311.1886.

[136]  James H. Moor,et al.  Knowledge and the Flow of Information. , 1982 .

[137]  A. Glenberg,et al.  Symbol Grounding and Meaning: A Comparison of High-Dimensional and Embodied Theories of Meaning , 2000 .

[138]  C. Rovelli Meaning and Intentionality = Information + Evolution , 2018 .

[139]  Udo Seifert,et al.  Sensory capacity: An information theoretical measure of the performance of a sensor. , 2015, Physical review. E.

[140]  Terrence W. Deacon,et al.  Information and the Nature of Reality: What is missing from theories of information? , 2010 .

[141]  William P. Alston,et al.  Knowledge and the Flow of Information , 1985 .

[142]  Gábor Elek,et al.  The living matter according to Ervin Bauer (1890-1938), (on the 75th anniversary of his tragic death) (History). , 2013, Acta Physiologica Hungarica.

[143]  Naftali Tishby,et al.  The Information Bottleneck Revisited or How to Choose a Good Distortion Measure , 2007, 2007 IEEE International Symposium on Information Theory.

[144]  Nathaniel Virgo,et al.  Life and Its Close Relatives , 2009, ECAL.

[145]  E. Jablonka Information: Its Interpretation, Its Inheritance, and Its Sharing , 2002, Philosophia Scientiæ.

[146]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[147]  Mikhail Prokopenko,et al.  Transfer entropy in continuous time, with applications to jump and neural spiking processes , 2016, Physical review. E.