Mutations in the evolutionarily highly conserved KEOPS complex genes cause nephrotic syndrome with microcephaly

Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in Correspondence should be addressed to: Martin Zenker, M.D., Institute of Human Genetics, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany, Phone: +49 391 67 15064, martin.zenker@med.ovgu.de or Corinne Antignac, M.D., Ph.D., INSERM U1163, Institut Imagine, 24, bd du Montparnasse, 75015 Paris, France, Phone: +33 1 42 75 43 45, corinne.antignac@inserm.fr or Friedhelm Hildebrandt, M.D., Boston Children’s Hospital, Enders 561, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA, Phone: +1 617-355 6129, Fax: +1 617-730 0569, friedhelm.hildebrandt@childrens.harvard.edu. *These authors contributed equally to this work. ACCESSION NUMBERS LAGE3 (NM_006014.4), OSGEP (NM_017807.3), TP53RK (NM_033550.3), TPRKB (NM_016058.2). Competing interests statement M.T.C., A.B., and R.E.S. are employees of GeneDx, Gaithersburg, MD, USA. The other authors declare that they have no competing financial interests. AUTHOR CONTRIBUTIONS 1. J.R., G.M., D.S., W.T., O.G., S.A., De.S., N.B., Ga.M., S.L., M.F., B.M., S.V., N.dR., M.A., T.H., S.S., E.W., H.Y.G., W.I.C., C.E.S., W.L.P., J.W., A.D., W.M., A.B., R.E.S., S.M., R.P.L., M.Z., C.A. and F.H. generated total genome linkage data, performed exome capture with massively parallel sequencing, and performed whole exome evaluation and mutation analysis. 2. D.A.B. generated knockdown cell lines, performed in-vitro studies (proliferation, survival, apoptosis, and migration) in immortalized human podocytes, and performed co-immunoprecipitation experiments. 3. D.A.B. and J.A.L. performed immunofluorescence and subcellular localization studies in tissue sections and cell lines by confocal microscopy. 4. J.R., W.T., J.W., D.A.B., O.B., Ba.B., Br.B., Ma.B., G.S.C.,J.H.C., M.T.C., P.G., C.K.B., Y.Y.K., W.M.L., E.L., S.P.L., R.O.L., A.M., M.M., K.N., M.P., A.P., C.P., P.R., T.S., M.S., N.A.S., K.S., W.H.T., J.D.T., Da.S., M.H.T., U.V., D.H.V., N.V., J.L.W., M.T.F.W., S.N.W., P.K., D.C., D.M., B.C., M.Z., C.A., and F.H. recruited patients and gathered detailed clinical information for the study. 5. M.C.D., Br.C., D.L., T.B.L., and H.V.T. performed yeast complementation experiments, and 3D modeling of the KEOPS complex. 6. I.C.G. and G.M. performed proteomic studies in human podocyte cell lines 7. P.R. performed telomere restriction fragment assay 8. T.J.S., J.M.S., A.P., and G.T. performed zebrafish experiments and data analysis. 9. O.S.F. and M.B. performed CRISPR/Cas9 knockout in mouse embryos and subsequent embryonic phenotyping. 10. All authors critically reviewed the paper. 11. M.Z., C.A. and F.H. conceived of and directed the project and wrote the paper, with the help of D.A.B., G.M. and H.V.T. HHS Public Access Author manuscript Nat Genet. Author manuscript; available in PMC 2018 April 01. Published in final edited form as: Nat Genet. 2017 October ; 49(10): 1529–1538. doi:10.1038/ng.3933. A uhor M anscript

[1]  L. Hood,et al.  A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51 , 2015, Nature Communications.

[2]  D. Prayer,et al.  WDR73 Mutations Cause Infantile Neurodegeneration and Variable Glomerular Kidney Disease , 2015, Human mutation.

[3]  M. Hurles,et al.  Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73 , 2015, Brain : a journal of neurology.

[4]  S. Engelmann,et al.  A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. , 2015, Journal of the American Society of Nephrology : JASN.

[5]  Margaret Y. Nettleton,et al.  KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. , 2015, The Journal of clinical investigation.

[6]  M. Graille,et al.  Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex , 2015, Nucleic acids research.

[7]  N. Boddaert,et al.  Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. , 2014, American Journal of Human Genetics.

[8]  S. Levy,et al.  ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. , 2013, The Journal of clinical investigation.

[9]  F. Hildebrandt,et al.  Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy , 2013, Human Genetics.

[10]  V. Plagnol,et al.  Constitutional Mutations in RTEL1 Cause Severe Dyskeratosis Congenita , 2013, American journal of human genetics.

[11]  H. Stunnenberg,et al.  The Human EKC/KEOPS Complex Is Recruited to Cullin2 Ubiquitin Ligases by the Human Tumour Antigen PRAME , 2012, PloS one.

[12]  L. Foster,et al.  A high-throughput approach for measuring temporal changes in the interactome , 2012, Nature Methods.

[13]  Corinne Stoetzel,et al.  Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling , 2012, Cell.

[14]  Dorit Hanein,et al.  The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration , 2012, The Journal of cell biology.

[15]  T. Lenstra,et al.  Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs , 2011, Nucleic acids research.

[16]  E. Koonin,et al.  The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A , 2011, The EMBO journal.

[17]  Tamer Kahveci,et al.  A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification , 2011, The EMBO journal.

[18]  David P. Davis,et al.  A chemosensitization screen identifies TP53RK, a kinase that restrains apoptosis after mitotic stress. , 2010, Cancer research.

[19]  P. Forterre,et al.  Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance , 2009, Nucleic acids research.

[20]  F. Hildebrandt,et al.  Specific podocin mutations determine age of onset of nephrotic syndrome all the way into adult life. , 2009, Kidney international.

[21]  P. Forterre,et al.  The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. , 2009, Biochemical Society transactions.

[22]  Peter Nürnberg,et al.  A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations , 2009, PLoS genetics.

[23]  D. Durocher,et al.  Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. , 2008, Molecular cell.

[24]  P. Forterre,et al.  Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex , 2008, The EMBO journal.

[25]  P. Jeggo,et al.  The role of the DNA damage response pathways in brain development and microcephaly: insight from human disorders. , 2008, DNA repair.

[26]  William C Earnshaw,et al.  Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling , 2008, Nature Genetics.

[27]  K. Asanuma,et al.  Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. , 2007, Trends in cell biology.

[28]  K. Hofmann,et al.  Yeast homolog of a cancer‐testis antigen defines a new transcription complex , 2006, The EMBO journal.

[29]  L. Holzman,et al.  Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. , 2005, Journal of the American Society of Nephrology : JASN.

[30]  A. Bakkaloğlu,et al.  Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. , 2004, Journal of the American Society of Nephrology : JASN.

[31]  Judith A. Goodship,et al.  A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome , 2003, Nature Genetics.

[32]  P. Agris,et al.  Accurate Translation of the Genetic Code Depends on tRNA Modified Nucleosides* , 2002, The Journal of Biological Chemistry.