Influence of iron on the elastic properties of wadsleyite and ringwoodite

[1] We investigate by first‐principles the influence of iron on the elastic properties of the b–phase (wadsleyite) and g–phase (ringwoodite), polymorphs of olivine, the most abundant minerals of the upper and lower parts of the transition zone, respectively. Our study aims to complement experiments to understand details of the 410 km and 520 km discontinuities. The full elastic‐tensor Cij, bulk (K), and shear (G) moduli are determined under static conditions for b–g–(Mg1–xFex)2SiO4 with x = 0.125. Wave propagation anisotropy in single crystals and polarization anisotropy in aggregates with preferred orientation are investigated and compared with those of iron‐free wadsleyite and ringwoodite for a thorough understanding of the effect of iron. We examine the effect of iron on velocity contrasts due to phase changes and conclude that iron enhances DVP and DVS across the a → b transition but suppresses them across the b → g transition. The latter might contribute to suppress locally the 520 km discontinuity if this has a significant contribution from the b → g transition. We show that lateral variation of iron, dx, produces lateral velocity heterogeneity ratios similar to those produced by lateral variations of temperature, dT, both producing ratios comparable to values extracted from seismic tomography studies. However, in contrast with dT, dx produces negative values for density to longitudinal and shear wave velocity ratios. This might be considered the fingerprint of lateral variations of iron concentration. These negative ratios appear similar to results inferred from geodynamical models compiled by Karato and Karki (2001) for the upper mantle and transition zone.

[1]  P. Shearer,et al.  Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms , 2006 .

[2]  S. Sinogeikin,et al.  Elastic Properties of Minerals: A Key for Understanding the Composition and Temperature of Earth's Interior , 2008 .

[3]  D. Weidner,et al.  Single-Crystal Elastic Properties of the Modified Spinel (Beta) Phase of Magnesium Orthosilicate , 1984, Science.

[4]  J. Tsuchiya,et al.  MgSiO3 postperovskite at D'' conditions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Rubie,et al.  Splitting of the 520-Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle , 2008, Science.

[6]  R. Liebermann,et al.  Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures , 2007, Proceedings of the National Academy of Sciences.

[7]  C. Agee PHASE TRANSFORMATIONS AND SEISMIC STRUCTURE IN THE UPPER MANTLE AND TRANSITION ZONE , 1998 .

[8]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[9]  Y. Dimitrienko,et al.  Elastic properties of composite materials , 2010 .

[10]  Larry W. Finger,et al.  Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure , 1979 .

[11]  R. Liebermann,et al.  Sound velocities of olivine and beta polymorphs of Mg2SiO4 at Earth's transition zone pressures , 1996 .

[12]  R. Liebermann,et al.  Sound velocities of wadsleyite b-(Mg0.88Fe0.12)2SiO4 to 10 GPa , 2000 .

[13]  D. Wiens,et al.  The depth distribution of mantle anisotropy beneath the Tonga subduction zone , 1996 .

[14]  R. Wentzcovitch,et al.  Fundamentals of elasticity of ( Mg 1 − x , Fe x ) 2 SiO 4 olivine , 2010 .

[15]  Andrew Putnis,et al.  An Introduction to Mineral Sciences , 1992 .

[16]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[17]  J. Crain,et al.  Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures , 1997 .

[18]  R. Liebermann,et al.  The effect of iron on the elastic properties of ringwoodite at high pressure , 2006 .

[19]  Baosheng Li Characteristics of Lateral Heterogeneities with Thermal and Chemical Origins in Pyrolitic Lower Mantle , 2009 .

[20]  Cesar R. S. da Silva,et al.  Metadata management for distributed first principles calculations in VLab - A collaborative cyberinfrastructure for materials computation , 2008, Comput. Phys. Commun..

[21]  J. Woodhouse,et al.  Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.

[22]  R. Hazen,et al.  The effect of Fe on the crystal structure of wadsleyite β-(Mg1 − xFex)2SiO4, 0.00≤x≤0.40 , 1993 .

[23]  Baosheng Li Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa , 2004 .

[24]  R. Wentzcovitch,et al.  Invariant molecular-dynamics approach to structural phase transitions. , 1991, Physical review. B, Condensed matter.

[25]  L. Stixrude,et al.  Elasticity of (Mg,Fe)SiO3‐perovskite at high pressures , 2002 .

[26]  R. Wentzcovitch,et al.  Density functional study of vibrational and thermodynamic properties of ringwoodite , 2006 .

[27]  Satoshi Sasaki,et al.  Single‐crystal elastic properties of the spinel phase of Mg2SiO4 , 1984 .

[28]  L. Stixrude,et al.  Normal and inverse ringwoodite at high pressures , 1999 .

[29]  J. Gerald,et al.  Spinel elasticity and seismic structure of the transition zone of the mantle , 1991, Nature.

[30]  R. Cohen,et al.  Ferrous iron in post-perovskite from first-principles calculations , 2008 .

[31]  H. Mao,et al.  Single-crystal elasticity of β-Mg2SiO4 to the pressure of the 410 km seismic discontinuity in the Earth's mantle , 1997 .

[32]  S. Sinogeikin,et al.  Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite , 1998 .

[33]  B. Kiefer,et al.  Structure and elasticity of wadsleyite at high pressures , 2001 .

[34]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[35]  S. Sinogeikin,et al.  Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity , 2003 .

[36]  L. Stixrude,et al.  Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure , 1997 .

[37]  Thomas H. Jordan,et al.  Mantle layering from ScS reverberations: 2. The transition zone , 1991 .

[38]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[39]  Y. Meng,et al.  Hydrostatic compression of γ-Mg2SiO4 to mantle pressures and 700 K: Thermal equation of state and related thermoelastic properties , 1994 .

[40]  H. Mao,et al.  Single-crystal elasticity of the α and β of Mg2SiO4 polymorphs at high pressure , 2013 .

[41]  G. D. Price,et al.  Ab initio study of MgSiO3 C2/c enstatite , 1995 .

[42]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[43]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[44]  Renata M. Wentzcovitch,et al.  The Hubbard U correction for iron-bearing minerals: A discussion based on (Mg,Fe)SiO3 perovskite , 2011 .

[45]  Bijaya B. Karki,et al.  Origin of lateral variation of seismic wave velocities and density in the deep mantle , 2001 .

[46]  R. Wentzcovitch,et al.  alpha beta gamma transformations in Mg2SiO4 in Earth's transition zone , 2008 .

[47]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[48]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  G. MacDonald Composition and petrology of the earth's mantle , 1977 .

[50]  R. Wentzcovitch,et al.  Fundamentals of elasticity of (Mg1−x, Fex)2SiO4 olivine , 2010 .

[51]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[52]  Liping Liu THEORY OF ELASTICITY , 2012 .

[53]  H. Horiuchi,et al.  beta -Mg 2 SiO 4 ; single-crystal X-ray diffraction study , 1981 .

[54]  Price,et al.  Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.

[55]  Renata M. Wentzcovitch,et al.  First Principles Quasiharmonic Thermoelasticity of Mantle Minerals , 2010 .

[56]  R. Hazen,et al.  Effects of Fe/Mg on the compressibility of synthetic wadsleyite: β-(Mg1-xFex)2SiO4 (x≤0.25) , 1990 .

[57]  R. Hazen,et al.  Comparative high-pressure crystal chemistry of wadsleyite, β-(Mg1–xFex)2SiO4, with x = 0 and 0.25 , 2000 .

[58]  W. R. Panero,et al.  Cation disorder in ringwoodite and its effects on wave speeds in the Earth's transition zone , 2008 .

[59]  L. Stixrude,et al.  Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle , 2007 .

[60]  J. Watt,et al.  Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry , 1979 .