On the physical properties of z ≈ 6–8 galaxies

Aims. We analyse the spectral energy distributions (SEDs) of the most distant galaxies discovered with the Hubble Space telescope and from the COSMOS survey and determine their physical properties, such as stellar age and mass, dust attenuation, and star-formation rate. Methods. We use our SED fitting tool including the effects of nebular emission to analyse three samples of z ∼ 6-8 galaxies with observed magnitudes J AB ∼ 23 to 29. Our models cover a wide parameter space. Results. We find that the physical parameters of most galaxies cover a wide range of acceptable values. Stellar ages, in particular, are not strongly constrained, even for objects detected longward of the Balmer break. As already pointed out earlier, the effects of nebular lines significantly affect the age determinations of star-forming galaxies at z ∼ 6-8. We find no need for stellar populations with extreme metallicities or other non-standard assumptions (IMF, escape fraction) to explain the observed properties of faint z-dropout galaxies. Albeit with large uncertainties, our fit results show indications of dust attenuation in some of the z ≈ 6-8 galaxies, which have best-fit values of A v up to ∼1. Furthermore, we find a possible trend of increasing dust attenuation with galaxy mass, and a relatively large scatter in specific star-formation rates, SFR/M ★ . Conclusions. The physical parameters of very high-z galaxies may be more uncertain than indicated by previous studies. Dust attenuation seems also to be present in some z ≈ 6―8 galaxies, and may be correlated with galaxy mass, as is also the case for SFR.

[1]  Oxford,et al.  Constraints on star-forming galaxies at z≥ 6.5 from HAWK-I Y-band imaging of GOODS-South , 2009, 0909.4205.

[2]  F. Mannucci,et al.  Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field , 2009, 0909.2853.

[3]  J. Sommer-Larsen,et al.  IONIZING RADIATION FROM z = 4–10 GALAXIES , 2009, 0903.2045.

[4]  M. Franx,et al.  ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION , 2009, 0910.0838.

[5]  M. Franx,et al.  VERY BLUE UV-CONTINUUM SLOPE β OF LOW LUMINOSITY z ∼ 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES? , 2009, 0910.0001.

[6]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[7]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[8]  J. Dunlop,et al.  Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.

[9]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[10]  M. Franx,et al.  DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.

[11]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[12]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[13]  R. Bouwens,et al.  BRIGHT STRONGLY LENSED GALAXIES AT REDSHIFT z ∼ 6–7 BEHIND THE CLUSTERS ABELL 1703 AND CL0024+16 , 2009, 0903.3988.

[14]  P. McCarthy,et al.  EXPANDING THE SEARCH FOR GALAXIES AT z ∼ 7–10 WITH NEW NICMOS PARALLEL FIELDS , 2009, 0902.3245.

[15]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[16]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[17]  R. Maiolino,et al.  Modelling the effects of dust evolution on the SEDs of galaxies of different morphological type , 2009, 0901.1207.

[18]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[19]  R. Cen,et al.  IONIZING PHOTON ESCAPE FRACTIONS FROM HIGH-REDSHIFT DWARF GALAXIES , 2008, 0808.2477.

[20]  K. Aoki,et al.  THE STELLAR POPULATIONS OF LYMAN BREAK GALAXIES AT z ∼ 5 , 2008, 0811.2041.

[21]  D. Schaerer,et al.  3D Lyα radiation transfer III. Constraints on gas and stellar properties of z ∼ 3 Lyman break galaxies (LBG) and implications for high-z LBGs and Lyα emitters , 2008, 0805.3601.

[22]  P. McCarthy,et al.  A Lyman Break Galaxy Candidate at z ~ 9 , 2008, 0805.1228.

[23]  Richard S. Ellis,et al.  A Hubble and Spitzer Space Telescope Survey for Gravitationally Lensed Galaxies: Further Evidence for a Significant Population of Low-Luminosity Galaxies beyond z = 7 , 2008, 0803.4391.

[24]  E. Floc’h,et al.  Star formation history of galaxies from z = 0 to z = 0.7 : A backward approach to the evolution of star-forming galaxies , 2008, 0803.0414.

[25]  E. Zackrisson,et al.  The Impact of Nebular Emission on the Broadband Fluxes of High-Redshift Galaxies , 2008, 0802.3696.

[26]  H. Ferguson,et al.  A Population of Massive and Evolved Galaxies at z ≳ 5 , 2007, 0710.0406.

[27]  Hsiao-Wen Chen,et al.  Escape of Ionizing Radiation from High-Redshift Galaxies , 2007, 0707.0879.

[28]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[29]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[30]  M. Franx,et al.  Discovery of a Very Bright Strongly Lensed Galaxy Candidate at z ≈ 7.6 , 2007, 0802.2506.

[31]  J. Kneib,et al.  ZEN2: a narrow J-band search for z∼ 9 Lyα emitting galaxies directed towards three lensing clusters , 2007, 0709.1761.

[32]  Takashi Hattori,et al.  Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.

[33]  Richard S. Ellis,et al.  A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization , 2007 .

[34]  Mark Dickinson,et al.  Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.

[35]  D. Burgarella,et al.  Lyman break galaxies at z ∼ 1 and the evolution of dust attenuation in star-forming galaxies with redshift , 2007, 0706.0810.

[36]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[37]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[38]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[39]  Garching,et al.  Lyman-break galaxies at z ~ 5 – I. First significant stellar mass assembly in galaxies that are not simply z ~ 3 LBGs at higher redshift , 2007, astro-ph/0701725.

[40]  P. McCarthy,et al.  A Search for Lyman Break Galaxies at z > 8 in the NICMOS Parallel Imaging Survey , 2007, astro-ph/0701045.

[41]  Kyiv,et al.  Balmer jump temperature determination in a large sample of low-metallicity HII regions , 2007, astro-ph/0701032.

[42]  M. Lacy,et al.  The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.

[43]  M. Lacy,et al.  A New Measurement of the Stellar Mass Density at z ≈ 5: Implications for the Sources of Cosmic Reionization , 2006, astro-ph/0604250.

[44]  O. Fèvre,et al.  A narrow-band search for Ly alpha emitting galaxies at z = 8.8 , 2006, astro-ph/0611272.

[45]  T. Morokuma,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[46]  R. Bouwens,et al.  Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z ≈ 7 , 2006, astro-ph/0608444.

[47]  USA,et al.  New southern blue compact dwarf galaxies in the 2dF Galaxy Redshift Survey , 2006, astro-ph/0607443.

[48]  F. Mannucci,et al.  Evidence for strong evolution of the cosmic star formation density at high redshifts , 2006, astro-ph/0607143.

[49]  R. Davé,et al.  Constraints on physical properties of z ∼ 6 galaxies using cosmological hydrodynamic simulations , 2006, astro-ph/0607039.

[50]  J. Kneib,et al.  Constraining the population of 6 < z < 10 star-forming galaxies with deep near-IR images of lensing clusters , 2006, astro-ph/0606134.

[51]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[52]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[53]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[54]  A. Szalay,et al.  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[55]  Rodger I. Thompson,et al.  Galaxies at [FORMULA][F]z~7-8[/F][/FORMULA]: [FORMULA][F]z[INF]850[/INF][/F][/FORMULA]-Dropouts in the Hubble Ultra Deep Field , 2004 .

[56]  IoA,et al.  Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the z ~ 7 Galaxy Strongly Lensed by A2218 , 2004, astro-ph/0411117.

[57]  E. Oliva,et al.  A supernova origin for dust in a high-redshift quasar , 2004, Nature.

[58]  A. Kniazev,et al.  SBS 0335–052 E and W: Implications of new broad-band and Hα photometry , 2004, astro-ph/0405610.

[59]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[60]  J. Kneib,et al.  ISAAC/VLT observations of a lensed galaxy at z = 10.0 ⋆ , 2004, astro-ph/0403025.

[61]  J. Kneib,et al.  A Probable z ~ 7 Galaxy Strongly Lensed by the Rich Cluster A2218: Exploring the Dark Ages , 2004, astro-ph/0402319.

[62]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[63]  Peter Anders,et al.  Spectral and photometric evolution of young stellar populations: The impact of gaseous emission at various metallicities , 2003, astro-ph/0302146.

[64]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[65]  P. Papaderos,et al.  The blue compact dwarf galaxy I Zw 18: A comparative study of its low-surface-brightness component , 2002, astro-ph/0207314.

[66]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[67]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[68]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[69]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[70]  Frederic H. Chaffee,et al.  SBS 0335–052, A Probable Nearby Young Dwarf Galaxy: Evidence Pro and Con , 1997 .

[71]  M. Seaton,et al.  Interstellar extinction in the UV , 1979 .