Optimizing membrane-protein biogenesis through nonoptimal-codon usage

Two studies provide insights into the distinct strategies used by prokaryotes and eukaryotes to pause translation in order to facilitate cotranslational targeting of membrane proteins to the translocon.

[1]  Justin Gardin,et al.  Measurement of average decoding rates of the 61 sense codons in vivo , 2014, eLife.

[2]  Joachim Frank,et al.  Structure of the signal recognition particle interacting with the elongation-arrested ribosome , 2004, Nature.

[3]  Sebastian M. Waszak,et al.  A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation , 2014, Cell.

[4]  Gene-Wei Li,et al.  The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria , 2012, Nature.

[5]  Eva Maria Novoa,et al.  Speeding with control: codon usage, tRNAs, and ribosomes. , 2012, Trends in genetics : TIG.

[6]  Y. Pilpel,et al.  tRNA genes rapidly change in evolution to meet novel translational demands , 2013, eLife.

[7]  C. Kimchi-Sarfaty,et al.  Understanding the contribution of synonymous mutations to human disease , 2011, Nature Reviews Genetics.

[8]  M Madan Babu,et al.  Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems , 2014, Nature Structural &Molecular Biology.

[9]  Zoya Ignatova,et al.  Transient ribosomal attenuation coordinates protein synthesis and co-translational folding , 2009, Nature Structural &Molecular Biology.

[10]  M Madan Babu,et al.  The Hidden Codes That Shape Protein Evolution , 2013, Science.

[11]  Xin Zhang,et al.  Signal recognition particle: an essential protein-targeting machine. , 2013, Annual review of biochemistry.

[12]  Robert J. Keenan,et al.  Tail-anchored membrane protein insertion into the endoplasmic reticulum , 2011, Nature Reviews Molecular Cell Biology.

[13]  Judith Frydman,et al.  Evolutionary conservation of codon optimality reveals hidden signatures of co-translational folding , 2012, Nature Structural &Molecular Biology.

[14]  J. Frydman,et al.  The ribosome as a hub for protein quality control. , 2013, Molecular cell.

[15]  P. Brown,et al.  Defining the Specificity of Cotranslationally Acting Chaperones by Systematic Analysis of mRNAs Associated with Ribosome-Nascent Chain Complexes , 2011, PLoS biology.

[16]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[17]  Judith Frydman,et al.  Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo , 2014, Nature Structural &Molecular Biology.

[18]  W. Sossin,et al.  Intracellular Trafficking of RNA in Neurons , 2006, Traffic.

[19]  Tamir Tuller,et al.  The effect of tRNA levels on decoding times of mRNA codons , 2014, Nucleic acids research.

[20]  Yitzhak Pilpel,et al.  mRNA-programmed translation pauses in the targeting of E. coli membrane proteins , 2014, eLife.

[21]  P. Spencer,et al.  Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. , 2012, Journal of molecular biology.

[22]  O Shoval,et al.  Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space , 2012, Science.

[23]  Jianzhi Zhang,et al.  Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency , 2012, PLoS genetics.

[24]  Shifeng Xue,et al.  Specialized ribosomes: a new frontier in gene regulation and organismal biology , 2012, Nature Reviews Molecular Cell Biology.

[25]  Alan Brown,et al.  Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014, Science.

[26]  M. Schuldiner,et al.  A Network of Cytosolic Factors Targets SRP-Independent Proteins to the Endoplasmic Reticulum , 2013, Cell.

[27]  Y. Pilpel,et al.  An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation , 2010, Cell.

[28]  Y. Pilpel,et al.  Determinants of translation efficiency and accuracy , 2011, Molecular systems biology.