Fuzzy Clustering with a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images

In this paper, we put forward a novel approach for change detection in synthetic aperture radar (SAR) images. The approach classifies changed and unchanged regions by fuzzy c-means (FCM) clustering with a novel Markov random field (MRF) energy function. In order to reduce the effect of speckle noise, a novel form of the MRF energy function with an additional term is established to modify the membership of each pixel. In addition, the degree of modification is determined by the relationship of the neighborhood pixels. The specific form of the additional term is contingent upon different situations, and it is established ultimately by utilizing the least-square method. There are two aspects to our contributions. First, in order to reduce the effect of speckle noise, the proposed approach focuses on modifying the membership instead of modifying the objective function. It is computationally simple in all the steps involved. Its objective function can just return to the original form of FCM, which leads to its consuming less time than that of some obviously recently improved FCM algorithms. Second, the proposed approach modifies the membership of each pixel according to a novel form of the MRF energy function through which the neighbors of each pixel, as well as their relationship, are concerned. Theoretical analysis and experimental results on real SAR datasets show that the proposed approach can detect the real changes as well as mitigate the effect of speckle noises. Theoretical analysis and experiments also demonstrate its low time complexity.

[1]  B. Achiriloaie,et al.  VI REFERENCES , 1961 .

[2]  Hervé Delingette,et al.  Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis , 1999, IPMI.

[3]  Lorenzo Bruzzone,et al.  An Adaptive Semi-Parametric and Context-Based Approach to Unsupervised Change Detection in Multitemporal Remote-Sensing Images , 2002 .

[4]  Fabrice Heitz,et al.  Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution , 2003, NeuroImage.

[5]  Jean-Marie Nicolas,et al.  Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Lorenzo Bruzzone,et al.  An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Jordi Inglada,et al.  A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Allan Aasbjerg Nielsen,et al.  The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data , 2007, IEEE Transactions on Image Processing.

[9]  Amandine Robin,et al.  An A-Contrario Approach for Subpixel Change Detection in Satellite Imagery , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Francesca Bovolo,et al.  A Context-Sensitive Technique Robust to Registration Noise for Change Detection in VHR Multispectral Images , 2010, IEEE Transactions on Image Processing.

[11]  Change detection in multi-temporal SAR images , 2012 .