Metabolic Flux Analysis

Part I. Models - Stoichiometry, Network Generation 1. Stoichiometric Modelling of Microbial Metabolism Lars Kuepfer 2. Tapping the Wealth of Microbial Data in High-Throughput Metabolic Model Reconstruction Ric Colasanti, Janaka N. Edirisinghe, Tahmineh Khazaei, Jose P. Faria, Sam Seaver, Fangfang Xia, and Christopher Henry Part II. Thermodynamics - A Step Beyond MFA 3. Constraining the Flux Space using Thermodynamics and Integration of Metabolomics Data Keng Cher Soh and Vassily Hatzimanikatis 4. NExT - Integration of Thermodynamic Constraints and Metabolomics Data into a Metabolic Network Veronica Sofia Martinez and Lars Keld Nielsen Part III. Experiments - Design Considerations, Fermentation, Analytics 5. Customization of 13C-MFA Strategy According to Cell Culture System Lake-Ee Quek and Lars Keld Nielsen 6. Quantitative Metabolomics Using ID-MS Aljoscha S. Wahl, Reza Maleki Seifar, Angela ten Pierick, Cor Ras, Jan van Dam, Joseph J. Heijnen, and Walter M. Van Gulik 7. Determining the Biomass Composition of a Sponge Holobiont for Flux Analysis Jabin Watson, Bernard Degnan, Sandie Degnan, and Jens O. Kromer 8. Successful Down-Sizing for High-Throughput 13C-MFA Applications Birgitta E. Ebert and Lars M. Blank 9. Labelling Analysis for 13C MFA Using NMR Spectroscopy Paula Jouhten and Hannu Maaheimo 10. GC-MS Based 13C Metabolic Flux Analysis Judith Becker and Christoph Wittman 11. Dynamic Cell Respiration & CO2 Labeling Analysis Using Membrane-Inlet Mass Spectrometry Tae Hoon Yang Part IV. 13C Fluxomics Data Processing 12. Correction of MS Data for Naturally Occurring Isotopes in Isotope Labelling Experiments Pierre Millard, Fabien Letisse, Serguei Sokol, and Jean-Charles Portais 13. Steady-State 13C Fluxomics Using OpenFLUX Lake-Ee Quek and Lars Keld Nielsen 14. Flux Visualization Using VANTED/FluxMap Christian Krach, Astrid Junker, Hendrik Rohn, Falk Schreiber, and Bjorn H. Junker Part V. Examples 15. Metabolic Flux Analysis for Escherichia coli by Flux Balance Analysis Yu Matsuoka and Kazuyuki Shimizu 16. 13C-Metabolic Flux Analysis for Escherichia coli Yu Matsuoka and Kazuyuki Shimizu 17. 3C-Based Metabolic Flux Analysis of Recombinant Pichia pastoris Pau Ferrer and Joan Albiol

[1]  Elmar Heinzle,et al.  Metabolic flux analysis in eukaryotes. , 2010, Current opinion in biotechnology.

[2]  J. François,et al.  Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. , 1997, Microbiology.

[3]  T. E. Smith,et al.  Properties of a mutant Escherichia coli phosphoenolpyruvate carboxylase deficient in coregulation by intermediary metabolites , 1981, Journal of bacteriology.

[4]  Merja Penttilä,et al.  Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A , 2008, BMC Systems Biology.

[5]  Christoph Wittmann,et al.  Respirometric 13C flux analysis--Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. , 2006, Metabolic engineering.

[6]  N. K. Khatri,et al.  Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction , 2007, Microbial cell factories.

[7]  G. Stephanopoulos,et al.  Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction , 2000, Biotechnology and bioengineering.

[8]  Brigitte Gasser,et al.  Accurate quantification of the redox-sensitive GSH/GSSG ratios in the yeast Pichia pastoris by HILIC–MS/MS , 2013, Analytical and Bioanalytical Chemistry.

[9]  Intawat Nookaew,et al.  Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials , 2012, BMC Systems Biology.

[10]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[11]  Y. Zhuang,et al.  Understanding the effect of foreign gene dosage on the physiology of Pichia pastoris by transcriptional analysis of key genes , 2011, Applied Microbiology and Biotechnology.

[12]  C. Wittmann,et al.  Respirometric 13C flux analysis, Part I: design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry. , 2006, Metabolic engineering.

[13]  Henry J. Fastert,et al.  Fermentation Exhaust Gas Analysis Using Mass Spectrometry , 1985, Bio/Technology.

[14]  Michael Sauer,et al.  The effect of temperature on the proteome of recombinant Pichia pastoris. , 2009, Journal of proteome research.

[15]  J. Guest,et al.  Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. , 2001, Microbiology.

[16]  Christoph Wittmann,et al.  Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling , 2005, Comput. Biol. Chem..

[17]  Pei Yee Ho,et al.  Effect of ldhA gene deletion on the metabolism of Escherichia coli based on gene expression, enzyme activities, intracellular metabolite concentrations, and metabolic flux distribution , 2005 .

[18]  Tae Hoon Yang,et al.  Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation , 2010, Microbial cell factories.

[19]  Sven-Olof Enfors,et al.  Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes , 2005, Bioprocess and biosystems engineering.

[20]  I. Dunn,et al.  State analysis of fermentation using a mass spectrometer with membrane probe , 1985, Biotechnology and bioengineering.

[21]  Thomas Szyperski,et al.  Metabolic-Flux Profiling of the Yeasts Saccharomyces cerevisiae and Pichia stipitis , 2003, Eukaryotic Cell.

[22]  W. Babel,et al.  Mixed Substrate Utilization in Micro-organisms: Biochemical Aspects and Energetics , 1985 .

[23]  Uwe Sauer,et al.  Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. , 2005, FEMS yeast research.

[24]  Muralidhar R. Mallem,et al.  Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. , 2011, Journal of biotechnology.

[25]  Lena Gustafsson,et al.  Distinct Intracellular Localization of Gpd1p and Gpd2p, the Two Yeast Isoforms of NAD+-dependent Glycerol-3-phosphate Dehydrogenase, Explains Their Different Contributions to Redox-driven Glycerol Production* , 2004, Journal of Biological Chemistry.

[26]  V. Fromion,et al.  A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. , 2012, Metabolic engineering.

[27]  Brigitte Gasser,et al.  Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. , 2012, Free radical biology & medicine.

[28]  G. Stephanopoulos,et al.  Metabolic Engineering: Principles And Methodologies , 1998 .

[29]  Kazuyuki Shimizu,et al.  Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. , 2005, Metabolic engineering.

[30]  Christoph Wittmann,et al.  Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. , 2012, Metabolic engineering.

[31]  Diethard Mattanovich,et al.  Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. , 2008, Biotechnology and bioengineering.

[32]  Sang Yup Lee,et al.  Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. , 2010, Biotechnology journal.

[33]  B. Palsson,et al.  Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling , 2006, Applied and Environmental Microbiology.

[34]  K. Shimizu,et al.  The effect of pfl gene knockout on the metabolism for optically pure d-lactate production by Escherichia coli , 2004, Applied Microbiology and Biotechnology.

[35]  H. Westerhoff,et al.  The Glycolytic Flux in Escherichia coli Is Controlled by the Demand for ATP , 2002, Journal of bacteriology.

[36]  Barbara M. Bakker,et al.  Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. , 2001, FEMS microbiology reviews.

[37]  Christoph Wittmann,et al.  Dynamic calibration and dissolved gas analysis using membrane inlet mass spectrometry for the quantification of cell respiration. , 2003, Rapid communications in mass spectrometry : RCM.

[38]  E. Heinzle,et al.  On-line fermentation gas analysis: Error analysis and application of mass spectrometry , 1990 .

[39]  R. Larossa,et al.  Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. , 2006, Metabolic engineering.