Neural Guidance for SAT Solving
暂无分享,去创建一个
Andy Davis | Geoffrey Irving | Yangqing Jia | M. Devin | Jonathon Shlens | Martín Abadi | S. Ghemawat | M. Isard | M. Kudlur | D. Murray | Benoit Steiner | Vijay Vasudevan | C. Olah | Kunal Talwar | R. Józefowicz | M. Schuster | Ashish Agarwal | Zhifeng Chen | A. Harp | Paul Barham | Jeffrey Dean | J. Levenberg | Fernanda | Moore | Sherry | Sutskever | Eugene Brevdo | Craig Citro | Ilya | Matthieu Devin | Greg S. Corrado | P. Barham | Ian | Goodfellow | Paul Tucker | Viégas | G. Irving | E. Brevdo
[1] David L. Dill,et al. Learning a SAT Solver from Single-Bit Supervision , 2018, ICLR.
[2] Joao Marques-Silva,et al. PySAT: A Python Toolkit for Prototyping with SAT Oracles , 2018, SAT.
[3] Taro Sekiyama,et al. Automated proof synthesis for propositional logic with deep neural networks , 2018, ArXiv.
[4] Cezary Kaliszyk,et al. Reinforcement Learning of Theorem Proving , 2018, NeurIPS.
[5] Richard Evans,et al. Can Neural Networks Understand Logical Entailment? , 2018, ICLR.
[6] Josef Urban,et al. ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback , 2018, IJCAR.
[7] Cezary Kaliszyk,et al. Deep Network Guided Proof Search , 2017, LPAR.
[8] Pushmeet Kohli,et al. Learning Continuous Semantic Representations of Symbolic Expressions , 2016, ICML.
[9] Andrei Voronkov,et al. First-Order Theorem Proving and Vampire , 2013, CAV.
[10] Gilles Audemard,et al. Predicting Learnt Clauses Quality in Modern SAT Solvers , 2009, IJCAI.
[11] Jens Otten,et al. leanCoP 2.0and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions) , 2008, IJCAR.
[12] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[13] J. A. Robinson,et al. Review: Martin Davis, George Logemann, Donald Loveland, A Machine Program for Theorem-Proving , 1967 .
[14] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.