Planning and learning under uncertainty

Automated Planning is the component of Artificial Intelligence that studies the computational process of synthesizing sets of actions whose execution achieves some given objectives. Research on Automated Planning has traditionally focused on solving theoretical problems in controlled environments. In such environments both, the current state of the environment and the outcome of actions, are completely known. The development of real planning applications during the last decade (planning fire extinction operations (Castillo et al., 2006), planning spacecraft activities (Nayak et al., 1999), planning emergency evacuation actions (Munoz-Avila et al., 1999)) has evidenced that these two assumptions are not true in many real-world problems. The planning research community is aware of this issue and during the last years, it has multiplied its efforts to find new planning systems able to address these kinds of problems. All these efforts have created a new field in Automated Planning called planning under uncertainty. Nevertheless, the new systems suffer from two limitations. (1) They precise accurate action models, though the definition by hand of accurate action models is frequently very complex. (2) They present scalability problems due to the combinatorial explosion implied by the expressiveness of its action models. This thesis defines a new planning paradigm for building, in an efficient and scalable way, robust plans in domains with uncertainty though the action model is incomplete. The thesis is that, the integration of relational machine learning techniques with the planning and execution processes, allows to develop planning systems that automatically enrich their initial knowledge about the environment and therefore find more robust plans. An empirical evaluation illustrates these benefits in comparison with state-of-the-art probabilistic planners which use static actions models.

[1]  Milind Tambe,et al.  Monitoring Teams by Overhearing: A Multi-Agent Plan-Recognition Approach , 2002, J. Artif. Intell. Res..

[2]  S. Yoon Towards Model-lite Planning : A Proposal For Learning & Planning with Incomplete Domain Models , 2007 .

[3]  Robert E. Kalaba,et al.  Dynamic Programming and Modern Control Theory , 1966 .

[4]  Hector Geffner,et al.  From Conformant into Classical Planning: Efficient Translations that May Be Complete Too , 2007, ICAPS.

[5]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[6]  David W. Aha,et al.  Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game , 2005, Künstliche Intell..

[7]  Raymond J. Mooney,et al.  Bottom-up learning of Markov logic network structure , 2007, ICML '07.

[8]  Eugene Fink,et al.  Integrating planning and learning: the PRODIGY architecture , 1995, J. Exp. Theor. Artif. Intell..

[9]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[10]  Oren Etzioni,et al.  Acquiring Search-Control Knowledge via Static Analysis , 1993, Artif. Intell..

[11]  Sergio Jiménez Celorrio,et al.  Learning Relational Decision Trees for Guiding Heuristic Planning , 2008, ICAPS.

[12]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[13]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[14]  Peter van Beek,et al.  CPlan: A Constraint Programming Approach to Planning , 1999, AAAI/IAAI.

[15]  Adi Botea,et al.  Offline Planning with Hierarchical Task Networks in Video Games , 2007, AIIDE.

[16]  Fausto Giunchiglia,et al.  Planning via Model Checking: A Decision Procedure for AR , 1997, ECP.

[17]  Andrew Coles,et al.  Managing concurrency in temporal planning using planner-scheduler interaction , 2009, Artif. Intell..

[18]  Edwin P. D. Pednault,et al.  ADL and the State-Transition Model of Action , 1994, J. Log. Comput..

[19]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  Fausto Giunchiglia,et al.  NUSMV: A New Symbolic Model Verifier , 1999, CAV.

[22]  M. Veloso,et al.  DISTILL : Towards Learning Domain-Specific Planners by Example , 2002 .

[23]  Dafna Shahaf,et al.  Learning Partially Observable Action Schemas , 2006, AAAI.

[24]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[25]  Kristian J. Hammond,et al.  Explaining and Repairing Plans that Fail , 1987, IJCAI.

[26]  Marco Roveri,et al.  Conformant Planning via Symbolic Model Checking , 2000, J. Artif. Intell. Res..

[27]  Scott Sherwood Benson,et al.  Learning action models for reactive autonomous agents , 1996 .

[28]  E. Shortliffe Computer-based medical consultations: mycin (elsevier north holland , 1976 .

[29]  John Levine,et al.  Learning Macro-Actions for Arbitrary Planners and Domains , 2007, ICAPS.

[30]  David A. McAllester,et al.  Systematic Nonlinear Planning , 1991, AAAI.

[31]  J. Ho,et al.  The Metric FF Planning System Translating Ignoring Delete Lists to Numeric State Variables , 2003 .

[32]  Hector Muñoz-Avila,et al.  Learning to Do HTN Planning , 2006, ICAPS.

[33]  Jan Friso Groote,et al.  Binary decision diagrams for first-order predicate logic , 2003, J. Log. Algebraic Methods Program..

[35]  Larry S. Davis,et al.  Pattern Databases , 1979, Data Base Design Techniques II.

[36]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[37]  Frederic Py,et al.  Adaptive Control for Autonomous Underwater Vehicles , 2008, AAAI.

[38]  Pat Langley,et al.  A Unified Cognitive Architecture for Physical Agents , 2006, AAAI.

[39]  Jonathan Schaeffer,et al.  Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators , 2005, J. Artif. Intell. Res..

[40]  R. Brafman,et al.  Contingent Planning via Heuristic Forward Search witn Implicit Belief States , 2005, ICAPS.

[41]  Ivan Serina,et al.  Planning Through Stochastic Local Search and Temporal Action Graphs in LPG , 2003, J. Artif. Intell. Res..

[42]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[43]  David W. Aha,et al.  HICAP: An Interactive Case-Based Planning Architecture and its Application to Noncombatant Evacuation Operations , 1999, AAAI/IAAI.

[44]  Ari K. Jónsson,et al.  Mixed-Initiative Activity Planning for Mars Rovers , 2005, IJCAI.

[45]  Dana S. Nau,et al.  New Advances in GraphHTN: Identifying Independent Subproblems in Large HTN Domains , 2000, AIPS.

[46]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[47]  Stefan Edelkamp,et al.  Symbolic Pattern Databases in Heuristic Search Planning , 2002, AIPS.

[48]  Aram Karalic,et al.  Employing Linear Regression in Regression Tree Leaves , 1992, ECAI.

[49]  Blai Bonet,et al.  mGPT: A Probabilistic Planner Based on Heuristic Search , 2005, J. Artif. Intell. Res..

[50]  John E. Laird,et al.  Learning procedural knowledge through observation , 2001, K-CAP '01.

[51]  Robert P. Goldman,et al.  From knowledge bases to decision models , 1992, The Knowledge Engineering Review.

[52]  Svetha Venkatesh,et al.  Policy Recognition in the Abstract Hidden Markov Model , 2002, J. Artif. Intell. Res..

[53]  Sergio Jiménez Celorrio,et al.  Improving Automated Planning with Machine Learning , 2012 .

[54]  Eva Onaindia,et al.  Planning in highly dynamic environments: an anytime approach for planning under time constraints , 2007, Applied Intelligence.

[55]  Earl D. Sacerdoti,et al.  Planning in a Hierarchy of Abstraction Spaces , 1974, IJCAI.

[56]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[57]  Marco Wiering,et al.  Explorations in efficient reinforcement learning , 1999 .

[58]  Luc De Raedt,et al.  Bellman goes relational , 2004, ICML.

[59]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[60]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[61]  Roni Khardon,et al.  Learning Action Strategies for Planning Domains , 1999, Artif. Intell..

[62]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[63]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[64]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[65]  Ivan Serina,et al.  Fast Plan Adaptation through Planning Graphs: Local and Systematic Search Techniques , 2000, AIPS.

[66]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[67]  Ronald L. Rivest,et al.  Learning decision lists , 2004, Machine Learning.

[68]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[69]  Hector Muñoz-Avila,et al.  HTN-MAKER: Learning HTNs with Minimal Additional Knowledge Engineering Required , 2008, AAAI.

[70]  Joachim Hertzberg,et al.  A framework for plan execution in behavior-based robots , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[71]  De,et al.  Relational Reinforcement Learning , 2001, Encyclopedia of Machine Learning and Data Mining.

[72]  Maurice Bruynooghe,et al.  Online Learning and Exploiting Relational Models in Reinforcement Learning , 2007, IJCAI.

[73]  William S. Lovejoy,et al.  Computationally Feasible Bounds for Partially Observed Markov Decision Processes , 1991, Oper. Res..

[74]  Richard E. Korf,et al.  Macro-Operators: A Weak Method for Learning , 1985, Artif. Intell..

[75]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[76]  H. Zimmermann Fuzzy sets, decision making, and expert systems , 1987 .

[77]  Robert Givan,et al.  Inductive Policy Selection for First-Order MDPs , 2002, UAI.

[78]  James A. Hendler,et al.  A Validation-Structure-Based Theory of Plan Modification and Reuse , 1992, Artif. Intell..

[79]  David W. Aha,et al.  CaMeL: Learning Method Preconditions for HTN Planning , 2002, AIPS.

[80]  Qiang Yang,et al.  Activating CBR Systems Through Autonomous Information Gathering , 1999, ICCBR.

[81]  David W. Aha,et al.  LEARNING PRECONDITIONS FOR PLANNING FROM PLAN TRACES AND HTN STRUCTURE , 2005, Comput. Intell..

[82]  Jaime G. Carbonell,et al.  Derivational Analogy in PRODIGY: Automating Case Acquisition, Storage, and Utilization , 1993, Machine Learning.

[83]  Ingrid Zukerman,et al.  Learning Search Control Rules for Planning: An Inductive Approach , 1991, ML.

[84]  Thomas Gärtner,et al.  Graph kernels and Gaussian processes for relational reinforcement learning , 2006, Machine Learning.

[85]  Manfred Jaeger,et al.  Relational Bayesian Networks , 1997, UAI.

[86]  Xuemei Wang,et al.  Learning Planning Operators by Observation and Practice , 1994, AIPS.

[87]  Andrew Coles,et al.  Marvin: A Heuristic Search Planner with Online Macro-Action Learning , 2011, J. Artif. Intell. Res..

[88]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[89]  Reid G. Simmons,et al.  Concurrent planning and execution for a walking robot , 1990, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[90]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[91]  Maria Fox,et al.  The Automatic Inference of State Invariants in TIM , 1998, J. Artif. Intell. Res..

[92]  S. Muggleton Stochastic Logic Programs , 1996 .

[93]  Peter Haddawy,et al.  Answering Queries from Context-Sensitive Probabilistic Knowledge Bases (cid:3) , 1996 .

[94]  Michael Beetz Structured reactive controllers: controlling robots that perform everyday activity , 1999, AGENTS '99.

[95]  Robert Givan,et al.  Learning Domain-Specific Control Knowledge from Random Walks , 2004, ICAPS.

[96]  Daniel Borrajo Learning action durations from executions , 2007 .

[97]  Michael L. Littman,et al.  Probabilistic Propositional Planning: Representations and Complexity , 1997, AAAI/IAAI.

[98]  P. Pandurang Nayak,et al.  Validating the DS-1 Remote Agent Experiment , 1999 .

[99]  James Cussens,et al.  Parameter Estimation in Stochastic Logic Programs , 2001, Machine Learning.

[100]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[101]  Ralph Bergmann,et al.  PARIS: Flexible Plan Adaptation by Abstraction and Refinement , 1996 .

[102]  Michèle Sebag,et al.  Distance Induction in First Order Logic , 1997, ILP.

[103]  Nicholas Kushmerick,et al.  An Algorithm for Probabilistic Planning , 1995, Artif. Intell..

[104]  Craig Boutilier,et al.  Symbolic Dynamic Programming for First-Order MDPs , 2001, IJCAI.

[105]  Sylvie Thiébaux,et al.  Probabilistic planning vs replanning , 2007 .

[106]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[107]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[108]  Gerald Jay Sussman,et al.  A Computer Model of Skill Acquisition , 1975 .

[109]  Sergio Jiménez Celorrio,et al.  A review of machine learning for automated planning , 2012, The Knowledge Engineering Review.

[110]  Nathanael Hyafil,et al.  Conformant Probabilistic Planning via CSPs , 2003, ICAPS.

[111]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[112]  Olivier Buffet,et al.  The factored policy-gradient planner , 2009, Artif. Intell..

[113]  L. P. Kaelbling,et al.  Learning Symbolic Models of Stochastic Domains , 2007, J. Artif. Intell. Res..

[114]  Patrik Haslum,et al.  Domain-Independent Construction of Pattern Database Heuristics for Cost-Optimal Planning , 2007, AAAI.

[115]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[116]  Luc De Raedt,et al.  Clausal Discovery , 1997, Machine Learning.

[117]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[118]  David Furcy,et al.  Heuristic Search-Based Replanning , 2002, AIPS.

[119]  Maurice Bruynooghe,et al.  A polynomial time computable metric between point sets , 2001, Acta Informatica.

[120]  Pedro Isasi Viñuela,et al.  Using genetic programming to learn and improve control knowledge , 2002, Artif. Intell..

[121]  Jesus Boticario,et al.  samap: An user-oriented adaptive system for planning tourist visits , 2008, Expert Syst. Appl..

[122]  Sergio Jiménez Celorrio,et al.  Machine Learning of Plan Robustness Knowledge About Instances , 2005, ECML.

[123]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[124]  David E. Smith,et al.  Conformant Graphplan , 1998, AAAI/IAAI.

[125]  Saso Dzeroski,et al.  Integrating Guidance into Relational Reinforcement Learning , 2004, Machine Learning.

[126]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[127]  Subbarao Kambhampati,et al.  Model-lite Planning for the Web Age Masses: The Challenges of Planning with Incomplete and Evolving Domain Models , 2007, AAAI.

[128]  Blai Bonet Functional Strips: a More General Language for Planning and Problem Solving (preliminary Version) , 1999 .

[129]  George W. Ernst,et al.  GPS : a case study in generality and problem solving , 1971 .

[130]  Yue Cao,et al.  Total-Order Planning with Partially Ordered Subtasks , 2001, IJCAI.

[131]  Richard E. Korf,et al.  Additive Pattern Database Heuristics , 2004, J. Artif. Intell. Res..

[132]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[133]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[134]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[135]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[136]  Andrew Coles,et al.  Planning in probabilistic domains using a deterministic numeric planner , 2006 .

[137]  Hector Geffner,et al.  Compiling Uncertainty Away: Solving Conformant Planning Problems using a Classical Planner (Sometimes) , 2006, AAAI.

[138]  Ari K. Jonsson,et al.  MAPGEN Planner: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission , 2003 .

[139]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[140]  Pedro Meseguer,et al.  Improving LRTA*(k) , 2007, IJCAI.

[141]  Sergio Jiménez Celorrio,et al.  The PELA Architecture: Integrating Planning and Learning to Improve Execution , 2008, AAAI.

[142]  Craig Boutilier,et al.  Probabilistic Planning via Linear Value-approximation of First-order MDPs , 2005 .

[143]  Robert Givan,et al.  Using Learned Policies in Heuristic-Search Planning , 2007, IJCAI.

[144]  Laurent Siklóssy,et al.  The Role of Preprocessing in Problem Solving Systems , 1977, IJCAI.

[145]  Ramón García-Martínez,et al.  An Integrated Approach of Learning, Planning, and Execution , 2000, J. Intell. Robotic Syst..

[146]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[147]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[148]  Qiang Yang,et al.  Learning Actions Models from Plan Examples with Incomplete Knowledge , 2005, ICAPS.

[149]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[150]  Rajesh Kalyanam,et al.  Stochastic Enforced Hill-Climbing , 2008, J. Artif. Intell. Res..

[151]  Robert Givan,et al.  Learning Heuristic Functions from Relaxed Plans , 2006, ICAPS.

[152]  Manuela M. Veloso,et al.  Lazy Incremental Learning of Control Knowledge for Efficiently Obtaining Quality Plans , 1997, Artificial Intelligence Review.

[153]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[154]  Robert Givan,et al.  FF-Replan: A Baseline for Probabilistic Planning , 2007, ICAPS.

[155]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[156]  Maurice Bruynooghe,et al.  Learning Relational Options for Inductive Transfer in Relational Reinforcement Learning , 2007, ILP.

[157]  Ronen I. Brafman,et al.  Conformant planning via heuristic forward search: A new approach , 2004, Artif. Intell..

[158]  H. Ector Geener Functional Strips: a More Flexible Language for Planning and Problem Solving , 2022 .

[159]  Luc De Raedt,et al.  Towards Combining Inductive Logic Programming with Bayesian Networks , 2001, ILP.

[160]  Manuela M. Veloso,et al.  DISTILL: Learning Domain-Specific Planners by Example , 2003, ICML.

[161]  F. Teichteil-Königsbuch,et al.  RFF : A Robust , FF-Based MDP Planning Algorithm for Generating Policies with Low Probability of Failure , 2008 .

[162]  Michael L. Littman,et al.  MAXPLAN: A New Approach to Probabilistic Planning , 1998, AIPS.

[163]  Mark A. Peot,et al.  Conditional nonlinear planning , 1992 .

[164]  黃崇冀,et al.  Machine learning : an artificial intelligence approach , 1988 .

[165]  Andrew G. Barto,et al.  Monte Carlo Matrix Inversion and Reinforcement Learning , 1993, NIPS.

[166]  R. M. Keller,et al.  The role of explicit contextual knowledge in learning concepts to improve performance , 1987 .

[167]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[168]  Craig Boutilier,et al.  Value-Directed Belief State Approximation for POMDPs , 2000, UAI.

[169]  Sergio Jiménez Celorrio,et al.  INTEGRATING PLANNING, EXECUTION, AND LEARNING TO IMPROVE PLAN EXECUTION , 2013, Comput. Intell..

[170]  Blai Bonet,et al.  Learning Depth-First Search: A Unified Approach to Heuristic Search in Deterministic and Non-Deterministic Settings, and Its Application to MDPs , 2006, ICAPS.

[171]  Roni Khardon,et al.  First Order Decision Diagrams for Relational MDPs , 2007, IJCAI.

[172]  Herbert A. Simon,et al.  Rule Creation and Rule Learning Through Environmental Exploration , 1989, IJCAI.

[173]  Raquel Fuentetaja,et al.  Improving Control-Knowledge Acquisition for Planning by Active Learning , 2006, ECML.

[174]  Piergiorgio Bertoli,et al.  Strong planning under partial observability , 2006, Artif. Intell..

[175]  Raquel Fuentetaja,et al.  Scaling up Heuristic Planning with Relational Decision Trees , 2014, J. Artif. Intell. Res..

[176]  John Langford,et al.  Probabilistic Planning in the Graphplan Framework , 1999, ECP.

[177]  Kurt Driessens,et al.  Relational Instance Based Regression for Relational Reinforcement Learning , 2003, ICML.

[178]  John E. Laird,et al.  Towards the knowledge level in Soar: the role of the architecture in the use of knowledge , 1993 .

[179]  F. Fernández,et al.  Capturing knowledge about the instances behavior in probabilistic domains , 2005 .

[180]  Subbarao Kambhampati,et al.  An Online Learning Method for Improving Over-Subscription Planning , 2008, ICAPS.

[181]  Jörg Hoffmann,et al.  The Metric-FF Planning System: Translating ''Ignoring Delete Lists'' to Numeric State Variables , 2003, J. Artif. Intell. Res..

[182]  Sylvie Thiébaux,et al.  Exploiting First-Order Regression in Inductive Policy Selection , 2004, UAI.

[183]  Ivan Serina,et al.  Plan Stability: Replanning versus Plan Repair , 2006, ICAPS.

[184]  Prasad Tadepalli,et al.  Learning Goal-Decomposition Rules Using Exercises , 1997, AAAI/IAAI.

[185]  Scott Sanner,et al.  Approximate Solution Techniques for Factored First-Order MDPs , 2007, ICAPS.

[186]  Hector Geffner,et al.  Fast and Informed Action Selection for Planning with Sensing , 2007, CAEPIA.

[187]  D. Borrajo,et al.  IPSS : A problem solver that integrates P & , 2004 .

[188]  William W. Cohen Learning Approximate Control Rules of High Utility , 1990, ML.

[189]  Malik Ghallab,et al.  Robot introspection through learned hidden Markov models , 2006, Artif. Intell..

[190]  G. C. Whelan,et al.  Probapop : Probabilistic Partial-Order Planning , 2004 .

[191]  Jussi Rintanen,et al.  Expressive Equivalence of Formalisms for Planning with Sensing , 2003, ICAPS.

[192]  Stuart I. Reynolds Reinforcement Learning with Exploration , 2002 .

[193]  Hector J. Levesque,et al.  The Tractability of Subsumption in Frame-Based Description Languages , 1984, AAAI.

[194]  Terry L. Zimmerman,et al.  Learning-Assisted Automated Planning: Looking Back, Taking Stock, Going Forward , 2003, AI Mag..

[195]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[196]  David E. Smith,et al.  Extending Graphplan to handle uncertainty and sensing actions , 1998, AAAI 1998.

[197]  Craig A. Knoblock Learning Abstraction Hierarchies for Problem Solving , 1990, AAAI.

[198]  Jinbo Huang,et al.  COMPLAN: A Conformant Probabilistic Planner ⁄ , 2006 .

[199]  Hector Geffner,et al.  Unifying the Causal Graph and Additive Heuristics , 2008, ICAPS.

[200]  V. Bulitko,et al.  Learning in Real-Time Search: A Unifying Framework , 2011, J. Artif. Intell. Res..

[201]  Daniel M. Gaines,et al.  Using regression trees to learn action models , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[202]  Robert Givan,et al.  Approximate Policy Iteration with a Policy Language Bias , 2003, NIPS.

[203]  Gerald DeJong,et al.  Explanation-Based Acquisition of Planning Operators , 2006, ICAPS.

[204]  Raymond J. Mooney,et al.  Combining FOIL and EBG to Speed-up Logic Programs , 1993, IJCAI.

[205]  Paul R. Cohen,et al.  Searching for Planning Operators with Context-Dependent and Probabilistic Effects , 1996, AAAI/IAAI, Vol. 1.

[206]  Eyal Amir,et al.  Learning Partially Observable Deterministic Action Models , 2005, IJCAI.

[207]  Pedro M. Domingos,et al.  Learning the structure of Markov logic networks , 2005, ICML.

[208]  Gregg Collins,et al.  2Planning for Contingencies: A Decision-based Approach , 1996, J. Artif. Intell. Res..

[209]  Juan Fernández-Olivares,et al.  Bringing Users and Planning Technology Together. Experiences in SIADEX , 2006, ICAPS.

[210]  D. Bryce POND : The Partially-Observable and Non-Deterministic Planner , 2006 .

[211]  Jaime G. Carbonell,et al.  Learning effective search control knowledge: an explanation-based approach , 1988 .

[212]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[213]  Werner Nutt,et al.  The Complexity of Concept Languages , 1997, KR.

[214]  Piero Risoluti Fuzzy Sets, Decision Making, and Expert Systems , 2004 .

[215]  Félix Ingrand,et al.  Interleaving Temporal Planning and Execution in Robotics Domains , 2004, AAAI.

[216]  Håkan L. S. Younes,et al.  The First Probabilistic Track of the International Planning Competition , 2005, J. Artif. Intell. Res..

[217]  R. Mike Cameron-Jones,et al.  Induction of logic programs: FOIL and related systems , 1995, New Generation Computing.

[218]  Shlomo Zilberstein,et al.  LAO*: A heuristic search algorithm that finds solutions with loops , 2001, Artif. Intell..

[219]  Martha E. Pollack,et al.  Conditional, Probabilistic Planning: A Unifying Algorithm and Effective Search Control Mechanisms , 1999, AAAI/IAAI.

[220]  Hector Geffner,et al.  Learning Generalized Policies in Planning Using Concept Languages , 2000, KR.

[221]  Tom Bylander,et al.  Complexity Results for Planning , 1991, IJCAI.

[222]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[223]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[224]  Enrico Pontelli,et al.  On Computing Conformant Plans Using Classical Planners: A Generate-And-Complete Approach , 2012, ICAPS.

[225]  Qiang Yang,et al.  Learning action models from plan examples using weighted MAX-SAT , 2007, Artif. Intell..

[226]  Reid G. Simmons,et al.  Structured control for autonomous robots , 1994, IEEE Trans. Robotics Autom..

[227]  Daniel Borrajo,et al.  Using Cases Utility for Heuristic Planning Improvement , 2007, ICCBR.

[228]  Bernhard Nebel,et al.  Ignoring Irrelevant Facts and Operators in Plan Generation , 1997, ECP.

[229]  Vincent Vidal,et al.  A Lookahead Strategy for Heuristic Search Planning , 2004, ICAPS.

[230]  Alan Fern,et al.  Discriminative Learning of Beam-Search Heuristics for Planning , 2007, IJCAI.

[231]  Stefan Kramer,et al.  Structural Regression Trees , 1996, AAAI/IAAI, Vol. 1.

[232]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[233]  Stephen Muggleton,et al.  Efficient Induction of Logic Programs , 1990, ALT.

[234]  Yolanda Gil,et al.  Acquiring domain knowledge for planning by experimentation , 1992 .

[235]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .