Efficacy of osimertinib plus bevacizumab in glioblastoma patients with simultaneous EGFR amplification and EGFRvIII mutation

[1]  G. Reifenberger,et al.  The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. , 2021, Neuro-oncology.

[2]  Wenlin Chen,et al.  Optimal Therapies for Recurrent Glioblastoma: A Bayesian Network Meta-Analysis , 2021, Frontiers in Oncology.

[3]  L. Farde,et al.  P76.72 A PET and MRI Study Exploring Osimertinib Brain Exposure and Efficacy in EGFRm NSCLC CNS Metastases , 2021 .

[4]  E. Rogozińska,et al.  Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. , 2021, The Cochrane database of systematic reviews.

[5]  A. Idbaih,et al.  Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives , 2020, Cancers.

[6]  G. Reifenberger,et al.  EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood , 2020, Nature Reviews Clinical Oncology.

[7]  N. Wang,et al.  Osimertinib for EGFR-mutant lung cancer with central nervous system metastases: a meta-analysis and systematic review. , 2020, Annals of palliative medicine.

[8]  P. Oefner,et al.  Activation of Epidermal Growth Factor Receptor Sensitizes Glioblastoma Cells to Hypoxia-Induced Cell Death , 2020, Cancers.

[9]  C. Scapoli,et al.  A Molecular Signature associated with prolonged survival in Glioblastoma patients treated with Regorafenib. , 2020, Neuro-oncology.

[10]  T. Mikkelsen,et al.  Exploring Predictors of Response to Dacomitinib in EGFR-Amplified Recurrent Glioblastoma. , 2020, JCO precision oncology.

[11]  D. Corcoran,et al.  Efficacy of osimertinib against EGFRvIII+ glioblastoma , 2020, Oncotarget.

[12]  Zev A. Binder,et al.  EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma , 2020, Oncogene.

[13]  G. Reifenberger,et al.  cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas , 2020, Acta Neuropathologica.

[14]  K. Aldape,et al.  ACTR-21. A RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED PHASE 3 TRIAL OF DEPATUXIZUMAB MAFODOTIN (ABT-414) IN EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) AMPLIFIED (AMP) NEWLY DIAGNOSED GLIOBLASTOMA (nGBM) , 2019, Neuro-Oncology.

[15]  Zev A. Binder,et al.  Clinical activity of the EGFR tyrosine kinase inhibitor osimertinib in EGFR-mutant glioblastoma , 2019, CNS oncology.

[16]  M. J. van den Bent,et al.  Survival of diffuse astrocytic glioma, IDH1/2-wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. , 2019, Neuro-oncology.

[17]  Stefan M. Pfister,et al.  Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions , 2019, Acta Neuropathologica.

[18]  Shangfeng Gao,et al.  The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma , 2019, Journal of Experimental & Clinical Cancer Research.

[19]  J. Pallud,et al.  A Meta-Analysis of Survival Outcomes Following Reoperation in Recurrent Glioblastoma: Time to Consider the Timing of Reoperation , 2019, Front. Neurol..

[20]  M. Khasraw,et al.  Anti-epidermal growth factor receptor therapy for glioblastoma in adults. , 2019, The Cochrane database of systematic reviews.

[21]  Y. Soon,et al.  Re-irradiation for recurrent glioblastoma (GBM): a systematic review and meta-analysis , 2018, Journal of Neuro-Oncology.

[22]  G. Reifenberger,et al.  cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV” , 2018, Acta Neuropathologica.

[23]  R. Verhaak,et al.  EGFR heterogeneity and implications for therapeutic intervention in glioblastoma , 2018, Neuro-oncology.

[24]  David T. W. Jones,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[25]  W. Weiss,et al.  Epidermal growth factor receptor (EGFR) and EGFRvIII in glioblastoma (GBM): signaling pathways and targeted therapies , 2017, Oncogene.

[26]  L. Recht,et al.  Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. , 2017, The Lancet. Oncology.

[27]  Baorui Liu,et al.  Targeting EGFRvIII for glioblastoma multiforme. , 2017, Cancer letters.

[28]  Susan M. Chang,et al.  Response Assessment in Neuro-Oncology Clinical Trials. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[29]  Z. Ram,et al.  Tumor-treating fields plus chemotherapy versus chemotherapy alone for glioblastoma at first recurrence: a post hoc analysis of the EF-14 trial. , 2017, CNS oncology.

[30]  Guido Reifenberger,et al.  Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma‐Tailored Gene Panel , 2017, Brain pathology.

[31]  S. Knappskog,et al.  EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. , 2016, Neuro-oncology.

[32]  Katharine A McNeill,et al.  Epidemiology of Brain Tumors. , 2016, Neurologic clinics.

[33]  Stefan M. Pfister,et al.  Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets , 2016, Acta Neuropathologica.

[34]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[35]  D. Xing,et al.  The Role of a Single Angiogenesis Inhibitor in the Treatment of Recurrent Glioblastoma Multiforme: A Meta-Analysis and Systematic Review , 2016, PloS one.

[36]  J. Sarkaria,et al.  InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma , 2015, Clinical Cancer Research.

[37]  Zhiyong Qin,et al.  Prognostic value of epidermal growth factor receptor amplification and EGFRvIII in glioblastoma: meta‐analysis , 2015, Acta neurologica Scandinavica.

[38]  B. Mayer,et al.  The discovery of modular binding domains: building blocks of cell signalling , 2015, Nature Reviews Molecular Cell Biology.

[39]  T. Cloughesy,et al.  Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma , 2015, Nature Reviews Cancer.

[40]  Jean J. Zhao,et al.  PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting , 2014, Nature Reviews Cancer.

[41]  Gelareh Zadeh,et al.  GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity. , 2014, Neuro-oncology.

[42]  R. Vernhout,et al.  Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. , 2014, The Lancet. Oncology.

[43]  W. Pao,et al.  AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. , 2014, Cancer discovery.

[44]  R. Coffey,et al.  Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. , 2014, Annual review of physiology.

[45]  Alex M. Fichtenholtz,et al.  Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing , 2013, Nature Biotechnology.

[46]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[47]  M. Westphal,et al.  Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110δ. , 2013, Neuro-oncology.

[48]  D. Brat,et al.  Blockade of Glioma Proliferation Through Allosteric Inhibition of JAK2 , 2013, Science Signaling.

[49]  D. Housman,et al.  Acquired MET Expression Confers Resistance to EGFR Inhibition In a Mouse Model of Glioblastoma Multiforme , 2011, Oncogene.

[50]  P. Mischel,et al.  Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism , 2011, Journal of Cell Science.

[51]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[52]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[53]  D. Pearson,et al.  IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. , 2009, Neuro-oncology.

[54]  K. Hoang-Xuan,et al.  Epidermal growth factor receptor extracellular domain mutations in primary glioblastoma , 2009, Neuropathology and applied neurobiology.

[55]  Frank McCormick,et al.  EGFR Signals to mTOR Through PKC and Independently of Akt in Glioma , 2009, Science Signaling.

[56]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[57]  David E Levy,et al.  Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. , 2008, Genes & development.

[58]  S. Horvath,et al.  Development of a Real-time RT-PCR Assay for Detecting EGFRvIII in Glioblastoma Samples , 2008, Clinical Cancer Research.

[59]  I. Hussaini,et al.  The protein kinase C-η isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway , 2007, Oncogene.

[60]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[61]  Susan M. Chang,et al.  Molecular Study of Malignant Gliomas Treated with Epidermal Growth Factor Receptor Inhibitors: Tissue Analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01 , 2005, Clinical Cancer Research.

[62]  J. Soh,et al.  PKC-η mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways , 2004, Oncogene.

[63]  J. Villano,et al.  A case study documenting the anticancer activity of ZD1839 (Iressa) in the brain. , 2003, Annals of oncology : official journal of the European Society for Medical Oncology.

[64]  F. Davis,et al.  Epidemiology of brain tumors. , 2000, Current opinion in neurology.

[65]  J. Herman,et al.  Predicting lung cancer by detecting aberrant promoter methylation in sputum. , 2000, Cancer research.

[66]  A. Brandes,et al.  Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. , 2019, The Lancet. Oncology.

[67]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[68]  Arnab Chakravarti,et al.  Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. , 2002, Cancer research.