Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations
暂无分享,去创建一个
[1] Jack K. Hale,et al. Infinite dimensional dynamical systems , 1983 .
[2] Nikolay V. Kuznetsov,et al. Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu-Morioka System , 2015, Entropy.
[3] G. Leonov. Strange attractors and classical stability theory , 2006 .
[4] E. Barabanov. Singular Exponents and Properness Criteria for Linear Differential Systems , 2005 .
[5] Ivan Zelinka,et al. ISCS 2014: Interdisciplinary Symposium on Complex Systems , 2015 .
[6] J. Rodriguez Hertz,et al. Some advances on generic properties of the Oseledets splitting , 2010, 1011.3171.
[7] N. A. Izobov. Lyapunov exponents and stability , 2012 .
[8] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[9] TIME CHANGES OF FLOWS , 1966 .
[10] James A. Yorke,et al. Is the dimension of chaotic attractors invariant under coordinate changes? , 1984 .
[11] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[12] J. Yorke,et al. Chaotic behavior of multidimensional difference equations , 1979 .
[13] Nikolay V. Kuznetsov,et al. Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.
[14] Manuel Merino,et al. Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.
[15] Nikolay V. Kuznetsov,et al. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..
[16] I. I. Shevchenko,et al. Lyapunov exponents in resonance multiplets , 2013, 1312.5560.
[17] G. Maruyama. Transformations of flows , 1966 .
[18] S. Pilyugin,et al. Theory of pseudo-orbit shadowing in dynamical systems , 2011 .
[19] Ralf Eichhorn,et al. Transformation invariance of Lyapunov exponents , 2001 .
[20] Luca Dieci,et al. Numerical Techniques for Approximating Lyapunov Exponents and Their Implementation , 2011 .
[21] G. Leonov,et al. On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..
[22] Lower Bounds for the Upper Lyapunov Exponent in One-Parameter Families of Millionshchikov Systems , 2015 .
[23] Chaos and fractals around black holes , 1995, gr-qc/9502014.
[24] A. Motter,et al. (Non)Invariance of Dynamical Quantities for Orbit Equivalent Flows , 2010, 1010.1791.
[25] Julien Clinton Sprott,et al. Heat conduction, and the lack thereof, in time-reversible dynamical systems: generalized Nosé-Hoover oscillators with a temperature gradient. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] G. A. Leonov,et al. Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..
[27] F. Ledrappier,et al. Some relations between dimension and Lyapounov exponents , 1981 .
[28] Aleksander Nawrat,et al. Lyapunov Exponents for Discrete Time-Varying Systems , 2013 .
[29] James A. Yorke,et al. The Many Facets of Chaos , 2015, Int. J. Bifurc. Chaos.
[30] Charles R. Doering,et al. On the shape and dimension of the Lorenz attractor , 1995 .
[31] Topological entropies of equivalent smooth flows , 2007, 0710.2836.
[32] J. Hatzenbuhler,et al. DIMENSION THEORY , 1997 .
[33] Holger Kantz,et al. Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.
[34] V. Boichenko,et al. Dimension theory for ordinary differential equations , 2005 .
[35] L. Tsimring,et al. The analysis of observed chaotic data in physical systems , 1993 .
[36] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[37] Alejandro J. Rodríguez-Luis,et al. The Lü system is a particular case of the Lorenz system , 2013 .
[38] L. Young. Mathematical theory of Lyapunov exponents , 2013 .
[39] Nikolay V. Kuznetsov,et al. Counterexample of Perron in the Discrete Case , 2001 .
[40] Gennady A. Leonov,et al. Lyapunov functions in the attractors dimension theory , 2012 .
[41] M. Rosenstein,et al. A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .
[42] Gennady A. Leonov,et al. Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system , 2013 .
[43] B. Deroin,et al. Lyapunov Exponents for Surface Group Representations , 2013, 1305.0049.
[44] R. Temam,et al. Local and Global Lyapunov exponents , 1991 .
[45] Y. Pesin,et al. Dimension type characteristics for invariant sets of dynamical systems , 1988 .
[46] Guanrong Chen,et al. THE CHEN SYSTEM REVISITED , 2013 .
[47] A. M. Lyapunov. The general problem of the stability of motion , 1992 .
[48] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .
[49] R. Temam,et al. Attractors Representing Turbulent Flows , 1985 .
[50] Mart́ın Sambarino,et al. A (short) survey on Dominated Splitting , 2014, 1403.6050.
[51] Luis Barreira,et al. Sets of “Non-typical” points have full topological entropy and full Hausdorff dimension , 2000 .
[52] Nikolay V. Kuznetsov,et al. Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..
[53] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[54] Carol G. Hoover,et al. Why Instantaneous Values of the "Covariant" Lyapunov Exponents Depend upon the Chosen State-Space Scale , 2013, 1309.2342.
[55] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[56] P. Grassberger,et al. Measuring the Strangeness of Strange Attractors , 1983 .
[57] I. Chueshov. Introduction to the Theory of In?nite-Dimensional Dissipative Systems , 2002 .
[58] L. Barreira,et al. Dimension estimates in smooth dynamics: a survey of recent results , 2010, Ergodic Theory and Dynamical Systems.
[59] James A Yorke,et al. When Lyapunov exponents fail to exist. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[60] T. N. Mokaev,et al. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .
[61] Ya. G. Sinai,et al. On the Notion of Entropy of a Dynamical System , 2010 .
[62] Brian R. Hunt,et al. Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors , 1996 .
[63] James A. Yorke,et al. Spurious Lyapunov Exponents Computed from Data , 2007, SIAM J. Appl. Dyn. Syst..
[64] W. Shen,et al. Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems , 2012, 1209.3381.