Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations

Nowadays the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. It may lead to a confusion since there are at least two well-known definitions, which are used in computations: the upper bounds of the exponential growth rate of the norms of linearized system solutions (Lyapunov characteristic exponents, LCEs) and the upper bounds of the exponential growth rate of the singular values of the fundamental matrix of linearized system (Lyapunov exponents, LEs). In this work, the relation between Lyapunov exponents and Lyapunov characteristic exponents is discussed. The invariance of Lyapunov exponents for regular and irregular linearizations under the change of coordinates is demonstrated.

[1]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[2]  Nikolay V. Kuznetsov,et al.  Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu-Morioka System , 2015, Entropy.

[3]  G. Leonov Strange attractors and classical stability theory , 2006 .

[4]  E. Barabanov Singular Exponents and Properness Criteria for Linear Differential Systems , 2005 .

[5]  Ivan Zelinka,et al.  ISCS 2014: Interdisciplinary Symposium on Complex Systems , 2015 .

[6]  J. Rodriguez Hertz,et al.  Some advances on generic properties of the Oseledets splitting , 2010, 1011.3171.

[7]  N. A. Izobov Lyapunov exponents and stability , 2012 .

[8]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[9]  TIME CHANGES OF FLOWS , 1966 .

[10]  James A. Yorke,et al.  Is the dimension of chaotic attractors invariant under coordinate changes? , 1984 .

[11]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[12]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[13]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[14]  Manuel Merino,et al.  Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.

[15]  Nikolay V. Kuznetsov,et al.  On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..

[16]  I. I. Shevchenko,et al.  Lyapunov exponents in resonance multiplets , 2013, 1312.5560.

[17]  G. Maruyama Transformations of flows , 1966 .

[18]  S. Pilyugin,et al.  Theory of pseudo-orbit shadowing in dynamical systems , 2011 .

[19]  Ralf Eichhorn,et al.  Transformation invariance of Lyapunov exponents , 2001 .

[20]  Luca Dieci,et al.  Numerical Techniques for Approximating Lyapunov Exponents and Their Implementation , 2011 .

[21]  G. Leonov,et al.  On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[22]  Lower Bounds for the Upper Lyapunov Exponent in One-Parameter Families of Millionshchikov Systems , 2015 .

[23]  Chaos and fractals around black holes , 1995, gr-qc/9502014.

[24]  A. Motter,et al.  (Non)Invariance of Dynamical Quantities for Orbit Equivalent Flows , 2010, 1010.1791.

[25]  Julien Clinton Sprott,et al.  Heat conduction, and the lack thereof, in time-reversible dynamical systems: generalized Nosé-Hoover oscillators with a temperature gradient. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  G. A. Leonov,et al.  Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[27]  F. Ledrappier,et al.  Some relations between dimension and Lyapounov exponents , 1981 .

[28]  Aleksander Nawrat,et al.  Lyapunov Exponents for Discrete Time-Varying Systems , 2013 .

[29]  James A. Yorke,et al.  The Many Facets of Chaos , 2015, Int. J. Bifurc. Chaos.

[30]  Charles R. Doering,et al.  On the shape and dimension of the Lorenz attractor , 1995 .

[31]  Topological entropies of equivalent smooth flows , 2007, 0710.2836.

[32]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .

[33]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[34]  V. Boichenko,et al.  Dimension theory for ordinary differential equations , 2005 .

[35]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[36]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[37]  Alejandro J. Rodríguez-Luis,et al.  The Lü system is a particular case of the Lorenz system , 2013 .

[38]  L. Young Mathematical theory of Lyapunov exponents , 2013 .

[39]  Nikolay V. Kuznetsov,et al.  Counterexample of Perron in the Discrete Case , 2001 .

[40]  Gennady A. Leonov,et al.  Lyapunov functions in the attractors dimension theory , 2012 .

[41]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[42]  Gennady A. Leonov,et al.  Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system , 2013 .

[43]  B. Deroin,et al.  Lyapunov Exponents for Surface Group Representations , 2013, 1305.0049.

[44]  R. Temam,et al.  Local and Global Lyapunov exponents , 1991 .

[45]  Y. Pesin,et al.  Dimension type characteristics for invariant sets of dynamical systems , 1988 .

[46]  Guanrong Chen,et al.  THE CHEN SYSTEM REVISITED , 2013 .

[47]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[48]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[49]  R. Temam,et al.  Attractors Representing Turbulent Flows , 1985 .

[50]  Mart́ın Sambarino,et al.  A (short) survey on Dominated Splitting , 2014, 1403.6050.

[51]  Luis Barreira,et al.  Sets of “Non-typical” points have full topological entropy and full Hausdorff dimension , 2000 .

[52]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[53]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[54]  Carol G. Hoover,et al.  Why Instantaneous Values of the "Covariant" Lyapunov Exponents Depend upon the Chosen State-Space Scale , 2013, 1309.2342.

[55]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[56]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[57]  I. Chueshov Introduction to the Theory of In?nite-Dimensional Dissipative Systems , 2002 .

[58]  L. Barreira,et al.  Dimension estimates in smooth dynamics: a survey of recent results , 2010, Ergodic Theory and Dynamical Systems.

[59]  James A Yorke,et al.  When Lyapunov exponents fail to exist. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[61]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[62]  Brian R. Hunt,et al.  Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors , 1996 .

[63]  James A. Yorke,et al.  Spurious Lyapunov Exponents Computed from Data , 2007, SIAM J. Appl. Dyn. Syst..

[64]  W. Shen,et al.  Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems , 2012, 1209.3381.