Gravity-driven granular free-surface flow around a circular cylinder

Abstract Snow avalanches and other hazardous geophysical granular flows, such as debris flows, lahars and pyroclastic flows, often impact on obstacles as they flow down a slope, generating rapid changes in the flow height and velocity in their vicinity. It is important to understand how a granular material flows around such obstacles to improve the design of deflecting and catching dams, and to correctly interpret field observations. In this paper small-scale experiments and numerical simulations are used to investigate the supercritical gravity-driven free-surface flow of a granular avalanche around a circular cylinder. Our experiments show that a very sharp bow shock wave and a stagnation point are generated in front of the cylinder. The shock standoff distance is accurately reproduced by shock-capturing numerical simulations and is approximately equal to the reciprocal of the Froude number, consistent with previous approximate results for shallow-water flows. As the grains move around the cylinder the flow expands and the pressure gradients rapidly accelerate the particles up to supercritical speeds again. The internal pressure is not strong enough to immediately push the grains into the space behind the cylinder and instead a grain-free region, or granular vacuum, forms on the lee side. For moderate upstream Froude numbers and slope inclinations, the granular vacuum closes up rapidly to form a triangular region, but on steeper slopes both experiments and numerical simulations show that the pinch-off distance moves far downstream.

[1]  Tómas Jóhannesson,et al.  Run-up of two avalanches on the deflecting dams at Flateyri, northwestern Iceland , 2001, Annals of Glaciology.

[2]  M. Branney,et al.  A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite , 1992 .

[3]  H. Swinney,et al.  Shocks in supersonic sand. , 2002, Physical review letters.

[4]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[5]  H. Herrmann,et al.  Physics of dry granular media , 1998 .

[6]  V. Jomelli,et al.  Wet snow avalanche deposits in the french alps: structure and sedimentology , 2001 .

[7]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[8]  Andrew W. Woods,et al.  Flying avalanches , 2003 .

[9]  Kolumban Hutter,et al.  Pattern formation in granular avalanches , 1997 .

[10]  Jean-Pierre Vilotte,et al.  Numerical modeling of self‐channeling granular flows and of their levee‐channel deposits , 2006 .

[11]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[12]  Onno Bokhove,et al.  Hydraulic flow through a channel contraction: Multiple steady states , 2008 .

[13]  S. Osher,et al.  High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .

[14]  Chia-Ch'iao Lin,et al.  On the Flow Behind Curved Shocks , 1948 .

[15]  T. Shinbrot,et al.  Reverse Buoyancy in Shaken Granular Beds , 1998 .

[16]  Kim,et al.  Experimental Studies of Supersonic Flow past a Circular Cylinder , 2013 .

[17]  A. Hogg,et al.  Oblique shocks in rapid granular flows , 2005 .

[18]  Roberto Zenit,et al.  Dense granular flow around an immersed cylinder , 2003 .

[19]  Thorsten Pöschel,et al.  Interaction of a granular stream with an obstacle , 1997 .

[20]  A. W. Vreman,et al.  Supercritical shallow granular flow through a contraction: experiment, theory and simulation , 2007, Journal of Fluid Mechanics.

[21]  Ernst Preiswerk Anwendung gasdynamischer Methoden auf Wasserströmungen mit freier Oberfläche , 1938 .

[22]  Sebastian Noelle,et al.  Flow of dense avalanches past obstructions , 2001, Annals of Glaciology.

[23]  J. Gray,et al.  Large particle segregation, transport and accumulation in granular free-surface flows , 2010, Journal of Fluid Mechanics.

[24]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[25]  J. Gray,et al.  Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows , 2007, Journal of Fluid Mechanics.

[26]  R. Kenneth Lobb,et al.  Chapter 26 - Experimental Measurement of Shock Detachment Distance on Spheres Fired in Air at Hypervelocities , 1964 .

[27]  Jean-Pierre Vilotte,et al.  Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme , 2003 .

[28]  Kapiza waves as a test for three-dimensional granular flow rheology , 2006, Journal of Fluid Mechanics.

[29]  F. Wei,et al.  Real‐time measurement and preliminary analysis of debris‐flow impact force at Jiangjia Ravine, China , 2011 .

[30]  Peter Gauer,et al.  The design of avalanche protection dams : recent practical and theoretical developments , 2009 .

[31]  Hunter Rouse,et al.  Fluid Mechanics for Hydraulic Engineers , 1961 .

[32]  Peter Gauer,et al.  Overrun length of avalanches overtopping catching dams: Cross‐comparison of small‐scale laboratory experiments and observations from full‐scale avalanches , 2008 .

[33]  J. Gray,et al.  Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland , 2007 .

[34]  R. Hoblitt,et al.  Pyroclastic flows generated by gravitational instability of the 1996–97 Lava Dome of Soufriere Hills Volcano, Montserrat , 1998 .

[35]  J. Gray,et al.  Granular flow in partially filled slowly rotating drums , 2001, Journal of Fluid Mechanics.

[36]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[37]  Olivier Pouliquen,et al.  SCALING LAWS IN GRANULAR FLOWS DOWN ROUGH INCLINED PLANES , 1999 .

[38]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[39]  Andrew W. Woods,et al.  Flying avalanches , 2003 .

[40]  N. Rivière,et al.  Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow , 2010 .

[41]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[42]  Henri Viviand,et al.  Conservation forms of gas dynamic equations , 1975 .

[43]  S. Savage,et al.  Gravity flow of cohesionless granular materials in chutes and channels , 1979, Journal of Fluid Mechanics.

[44]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[45]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  Sebastian Noelle,et al.  Shock waves, dead zones and particle-free regions in rapid granular free-surface flows , 2003, Journal of Fluid Mechanics.

[47]  K. Hida An Approximate Study on the Detached Shock Wave in front of a Circular Cylinder and a Sphere , 1953 .

[48]  Roberto Zenit,et al.  Dilute Granular Flow around an Immersed Cylinder , 2004 .

[49]  Betty Sovilla,et al.  Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site , 2008 .

[50]  D. Baroudi,et al.  Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements , 2011, Journal of Glaciology.

[51]  M. Barbolini,et al.  Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles , 2007 .

[52]  O. Hungr,et al.  High velocity ring shear tests on sand , 1984 .

[53]  R. Iverson,et al.  Grain-size segregation and levee formation in geophysical mass flows , 2012 .

[54]  L. Schwartz,et al.  Supercritical flow past blunt bodies in shallow water , 1981 .

[55]  M. J. Lighthill,et al.  Dynamics of a dissociating gas Part I Equilibrium flow , 1957, Journal of Fluid Mechanics.

[56]  Kolumban Hutter,et al.  Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature , 1999, Journal of Fluid Mechanics.

[57]  N R Morgenstern,et al.  Experiments on the flow behaviour of granular materials at high velocity in an open channel , 1984 .

[58]  J. Ockendon,et al.  Mathematical aspects of the theory of inviscid hypersonic flow , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[59]  Christopher E. Brennen,et al.  Hydraulic jumps in granular material flow , 1983 .

[60]  H. Kellay,et al.  Drag coefficient for a circular obstacle in a quasi-two-dimensional dilute supersonic granular flow. , 2010, Physical review letters.

[61]  Olivier Pouliquen,et al.  Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane , 2001, Journal of Fluid Mechanics.

[62]  J. Gray,et al.  Granular jets and hydraulic jumps on an inclined plane , 2010, Journal of Fluid Mechanics.

[63]  Ronald F. Probstein,et al.  Hypersonic Flow Theory , 1959 .

[64]  Mach cone in a shallow granular fluid. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[66]  H. Olivier,et al.  Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows , 2008, Journal of Fluid Mechanics.

[67]  Y. Tai,et al.  Particle Size Segregation, Granular Shocks and Stratification Patterns , 1998 .

[68]  The granular jump , 2007, Journal of Fluid Mechanics.

[69]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests , 2001 .

[70]  R. Ecke,et al.  Avalanche dynamics on a rough inclined plane. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[72]  Marcel Vinokur,et al.  Conservation equations of gasdynamics in curvilinear coordinate systems , 1974 .

[73]  Yongqi Wang,et al.  Methods of similitude in granular avalanche flows , 1999 .