Stochastic optimization using a sparse grid collocation scheme
暂无分享,去创建一个
[1] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[2] N. Zabaras,et al. Stochastic inverse heat conduction using a spectral approach , 2004 .
[3] Barbara I. Wohlmuth,et al. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.
[4] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[5] Nicholas Zabaras,et al. On the solution of an ill‐posed design solidification problem using minimization techniques in finite‐ and infinite‐dimensional function spaces , 1993 .
[6] Yue-Tzu Yang,et al. A Three-Dimensional Inverse Problem of Estimating the Surface Thermal Behavior of the Working Roll in Rolling Process , 2000 .
[7] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[8] Michel Loève,et al. Probability Theory I , 1977 .
[9] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[10] Nicholas Zabaras,et al. The continuum sensitivity method for the computational design of three-dimensional deformation processes , 2006 .
[11] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[12] Nicholas Zabaras,et al. A Bayesian inference approach to the inverse heat conduction problem , 2004 .
[13] B. Blackwell,et al. Inverse Heat Conduction: Ill-Posed Problems , 1985 .
[14] Alvaro L. G. A. Coutinho,et al. Stabilized methods and post-processing techniques for miscible displacements , 2004 .
[15] Amvrossios C. Bagtzoglou,et al. Pollution source identification in heterogeneous porous media , 2001 .
[16] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[17] Alvaro L. G. A. Coutinho,et al. 37399 - Parallel Finite Element Simulation of Miscible Displacements in Porous Media , 1996 .
[18] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[19] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[20] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[21] S. Gorelick,et al. Identifying sources of groundwater pollution: An optimization approach , 1983 .
[22] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[23] Nicholas Zabaras,et al. A markov random field model of contamination source identification in porous media flow , 2006 .
[24] O. Alifanov. Inverse heat transfer problems , 1994 .
[25] Baskar Ganapathysubramanian,et al. Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method , 2007, J. Comput. Phys..
[26] Brian J. Wagner,et al. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling , 1992 .
[27] Nicholas Zabaras,et al. An object-oriented programming approach to the Lagrangian FEM analysis of large inelastic deformations and metal-forming processes , 1999 .