Size‐Dependent Structures and Optical Absorption of Boron‐Hyperdoped Silicon Nanocrystals

Hyperdoping silicon nanocrystals (Si NCs) is emerging as an effective means to obtain novel properties such as localized surface plasmon resonance (LSPR) from Si. Here it is shown that the physical properties and in particular the LSPR of boron (B)-hyperdoped Si NCs significantly change as the NC size decreases from 6.8 to 2.4 nm. While the largest Si NCs undergo a stronger reduction of the average lattice spacing upon doping with respect to the smallest ones, they suffer much less from disorder and show LSPR over a wider range of B concentration. As a result, by taking advantage of the tunability of the NC size and doping level, the LSPR energy can be changed, making attractive the development of novel Si structures and devices based on B-hyperdoped Si NCs.

[1]  H. Sugimoto,et al.  Energy Transfer in Silicon Nanocrystal Solids Made from All-Inorganic Colloidal Silicon Nanocrystals. , 2015, The journal of physical chemistry letters.

[2]  Probing Thermal Flux in Twinned Ge Nanowires through Raman Spectroscopy. , 2015, ACS applied materials & interfaces.

[3]  P. Lu,et al.  Light Trapping and Down‐Shifting Effect of Periodically Nanopatterned Si‐Quantum‐Dot‐Based Structures for Enhanced Photovoltaic Properties , 2014 .

[4]  U. Kortshagen Nonthermal plasma synthesis of semiconductor nanocrystals , 2009 .

[5]  Rebecca J. Anthony,et al.  High-efficiency silicon nanocrystal light-emitting devices. , 2011, Nano letters.

[6]  C. Delerue Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals , 2014 .

[7]  G. Ozin,et al.  Visible colloidal nanocrystal silicon light-emitting diode. , 2011, Nano letters.

[8]  U. Kortshagen,et al.  Optimization of Si NC/P3HT Hybrid Solar Cells , 2010 .

[9]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[10]  M. Stutzmann,et al.  Electronic transport in phosphorus-doped silicon nanocrystal networks. , 2008, Physical review letters.

[11]  U. Kortshagen,et al.  Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. , 2015, Nano letters.

[12]  T. Nozaki,et al.  Boron‐ and Phosphorus‐Hyperdoped Silicon Nanocrystals , 2015 .

[13]  A. Sabbah,et al.  Coherent excitation of the optic phonon in Si: Transiently stimulated Raman scattering with a finite-lifetime electronic excitation , 2007 .

[14]  Deren Yang,et al.  Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals , 2014 .

[15]  U. Kortshagen,et al.  Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. , 2013, Nano letters.

[16]  T. Nozaki,et al.  Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance , 2014 .

[17]  M. Zacharias,et al.  Electronic properties of phosphorus doped silicon nanocrystals embedded in SiO2 , 2015 .

[18]  Cohen,et al.  Band tails in hydrogenated amorphous silicon and silicon-germanium alloys. , 1990, Physical review letters.

[19]  Alexander N. Cartwright,et al.  A Solution‐Processed UV‐Sensitive Photodiode Produced Using a New Silicon Nanocrystal Ink , 2014 .

[20]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[21]  Deren Yang,et al.  Enhancing the Efficiency of Multicrystalline Silicon Solar Cells by the Inkjet Printing of Silicon-Quantum-Dot Ink , 2012 .

[22]  Juchen Guo,et al.  A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix , 2015 .

[23]  S. Campbell,et al.  Room-temperature atmospheric oxidation of Si nanocrystals after HF etching , 2007 .

[24]  J. Banfield,et al.  Surface chemistry controls crystallinity of ZnS nanoparticles. , 2006, Nano letters.

[25]  X. Blase,et al.  Superconductivity in doped cubic silicon , 2006, Nature.

[26]  X. Pi,et al.  Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance. , 2013, Physical review letters.

[27]  T. Nozaki,et al.  Freestanding doped silicon nanocrystals synthesized by plasma , 2015 .

[28]  C. B. Carter,et al.  Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach , 2008, Nanotechnology.

[29]  T. Gregorkiewicz,et al.  Silicon quantum dots: surface matters , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Yi Ding,et al.  Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. , 2015, ACS nano.

[31]  J. Grossman,et al.  Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. , 2011, Physical review letters.

[32]  Carolyn N. Valdez,et al.  Low capping group surface density on zinc oxide nanocrystals. , 2014, ACS nano.

[33]  Siyi Wang,et al.  Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging. , 2015, ACS nano.

[34]  M. Zacharias,et al.  Location and Electronic Nature of Phosphorus in the Si Nanocrystal − SiO2 System , 2015, Scientific Reports.

[35]  Dimitri A. Antoniadis,et al.  Strain relaxation in patterned strained silicon directly on insulator structures , 2005 .

[36]  S. Campbell,et al.  Doping efficiency, dopant location, and oxidation of Si nanocrystals , 2008 .

[37]  P. Nordlander,et al.  Theory of Quantum Plasmon Resonances in Doped Semiconductor Nanocrystals , 2014 .

[38]  M. Roussel,et al.  Efficient n-type doping of Si nanocrystals embedded in SiO2 by ion beam synthesis , 2013 .

[39]  T. Nozaki,et al.  Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors. , 2014, ACS nano.

[40]  S. Ikhmayies,et al.  A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films , 2013 .

[41]  Deren Yang,et al.  Optimum Quantum Yield of the Light Emission from 2 to 10 nm Hydrosilylated Silicon Quantum Dots , 2016 .

[42]  I. Gregora,et al.  Applicability of Raman scattering for the characterization of nanocrystalline silicon , 1999 .

[43]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[44]  Silicon Nanocrystals: Size Matters , 2005 .

[45]  A. Tagliaferro,et al.  Disorder and Urbach energy in hydrogenated amorphous carbon: A phenomenological model , 2004 .

[46]  Allan,et al.  Screening in Semiconductor Nanocrystallites and Its Consequences for Porous Silicon. , 1995, Physical review letters.

[47]  Junwei Wei,et al.  Synthesis of Ligand-Stabilized Silicon Nanocrystals with Size-Dependent Photoluminescence Spanning Visible to Near-Infrared Wavelengths , 2012 .

[48]  J Justin Gooding,et al.  Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. , 2014, Chemical Society reviews.

[49]  P. Jain,et al.  Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. , 2014, The journal of physical chemistry letters.

[50]  G. Ozin,et al.  Multicolor silicon light-emitting diodes (SiLEDs). , 2013, Nano letters.

[51]  C. Su,et al.  Coordination of Adsorbed Boron: A FTIR Spectroscopic Study. , 1995, Environmental science & technology.

[52]  Stutzmann Hydrogen passivation of boron acceptors in silicon: Raman studies. , 1987, Physical review. B, Condensed matter.

[53]  E. Aydil,et al.  Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement. , 2015, Nano letters.

[54]  H. R. Chandrasekhar,et al.  Study of the localized vibrations of boron in heavily doped Si , 1980 .

[55]  M. Stutzmann,et al.  Low‐Cost Post‐Growth Treatments of Crystalline Silicon Nanoparticles Improving Surface and Electronic Properties , 2012 .