Faster R-CNN-based Decision Making in a Novel Adaptive Dual-Mode Robotic Anchoring System

This paper proposes a novel adaptive anchoring module that can be integrated into robots to enhance their mobility and manipulation abilities. The module can deploy a suitable mode of attachment, via spines or vacuum suction, to different contact surfaces in response to the textural properties of the surfaces. In order to make a decision on the suitable mode of attachment, an original dataset of 100 images of outdoor and indoor surfaces was enhanced using a WGAN-GP to generate an additional 200 synthetic images. The enhanced dataset was then used to train a visual surface examination model using Faster RCNN. The addition of synthetic images increased the mean average precision of the Faster R-CNN model from 81.6% to 93.9%. We have also conducted a series of load tests to characterize the module’s strength of attachments. The results of the experiments indicate that the anchoring module can withstand an applied detachment force of around 22N and 20N when attached using spines and vacuum suction on the ideal surfaces, respectively.