A probabilistic algorithm for the post office problem

The <italic>post office problem</italic> is the following: points in <italic>d</italic>-dimensional space, so that given an arbitrary point <italic>p</italic>, the closest points in <italic>S</italic> to <italic>p</italic> can be found quickly. We consider the case of this problem where the Euclidean norm is the measure of distance. The previous best algorithm for this problem for <italic>d</italic>>2 requires &Ogr;(<italic>n</italic><supscrpt>2<supscrpt><italic>d</italic>+1</supscrpt></supscrpt>) preprocessing time to build a data structure allowing an &Ogr;(log <italic>n</italic> query time. We will show that a data structure can be built in expected &Ogr;(<italic>n</italic><supscrpt>(<italic>d</italic>-1)(1+<italic>k</italic>)</supscrpt>) time, for any fixed <italic>k</italic>;>&Ogr;, so that closest-point queries can be answered in &Ogr;(log <italic>n</italic>) worstcase time. (The constant factors depend on <italic>d</italic> and <italic>k</italic>.) The algorithm employs random sampling, so the expected time holds for any set of points. A variant of this algorithm (for the variant problem where only one closest point of <italic>S</italic> to the query point is desired) requires &Ogr;(<italic>n</italic>⌈<supscrpt><italic>d</italic>/2</supscrpt>⌉) &ogr;(<italic>n</italic><supscrpt>⌈<italic>d</italic>/2⌉</supscrpt>) preprocessing time for &ogr;(n<supscrpt><italic>t</italic></supscrpt>) worst-case query time, for any fixed ε>0. These results approach the &OHgr;(<italic>n</italic><supscrpt>⌈<italic>d</italic>/2⌉</supscrpt>) preprocessing time required for any algorithm constructing the Voronoi diagram of the input points. Implementation of these algorithms requires not too much more than a random sampling procedure and a procedure for constructing the Voronoi diagram of that random sample.

[1]  V. Klee Some characterizations of convex polyhedra , 1959 .

[2]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[3]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[4]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[5]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[6]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[7]  Richard J. Lipton,et al.  Multidimensional Searching Problems , 1976, SIAM J. Comput..

[8]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[9]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[10]  V. Klee On the complexity ofd- dimensional Voronoi diagrams , 1979 .

[11]  Kevin Q. Brown Geometric transforms for fast geometric algorithms , 1979 .

[12]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[13]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[14]  B. Bhattacharya Application of computational geometry to pattern recognition problems , 1982 .

[15]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[16]  R. Guy A Couple of Cubic Conundrums , 1984 .

[17]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[18]  Kenneth L. Clarkson,et al.  Linear Programming in O(n * (3_d)_2) Time , 1986, Inf. Process. Lett..

[19]  Martin E. Dyer,et al.  On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem , 1986, SIAM J. Comput..