Achieving Completeness in Bounded Model Checking of Action Theories in ASP

Temporal logics can be used in reasoning about actions for specifying constraints on domain descriptions and temporal properties to be verified. In this paper, we exploit bounded model checking (BMC) techniques in the verification of dynamic linear time temporal logic (DLTL) properties of an action theory, which is formulated in a temporal extension of answer set programming (ASP). To achieve completeness, we propose an approach to BMC which exploits the Buchi automaton construction while searching for a counterexample. We provide an encoding in ASP of the temporal action domain and of bounded model checking of DLTL formulas.

[1]  Laura Giordano,et al.  Tableau-based automata construction for dynamic linear time temporal logic* , 2006, Annals of Mathematics and Artificial Intelligence.

[2]  Chitta Baral,et al.  Non-monotonic Temporal Logics for Goal Specification , 2007, IJCAI.

[3]  Sheila A. McIlraith,et al.  Optimizing Web Service Composition While Enforcing Regulations , 2009, SEMWEB.

[4]  Marco Pistore,et al.  Planning as Model Checking for Extended Goals in Non-deterministic Domains , 2001, IJCAI.

[5]  Martin Gebser,et al.  Engineering an Incremental ASP Solver , 2008, ICLP.

[6]  Enrico Giunchiglia,et al.  Nonmonotonic causal theories , 2004, Artif. Intell..

[7]  Laura Giordano,et al.  Reasoning about actions with Temporal Answer Sets , 2011, Theory and Practice of Logic Programming.

[8]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[9]  Marco Pistore,et al.  Planning with a language for extended goals , 2002, AAAI/IAAI.

[10]  Wolfgang Faber,et al.  A logic programming approach to knowledge-state planning: Semantics and complexity , 2004, TOCL.

[11]  Gerhard Lakemeyer,et al.  A Logic for Non-Terminating Golog Programs , 2008, KR.

[12]  Enrico Giunchiglia,et al.  An Action Language Based on Causal Explanation: Preliminary Report , 1998, AAAI/IAAI.

[13]  Jorge A. Baier,et al.  A Heuristic Search Approach to Planning with Temporally Extended Preferences , 2007, IJCAI.

[14]  Ilkka Niemelä,et al.  Bounded LTL model checking with stable models , 2003, Theory Pract. Log. Program..

[15]  P. S. Thiagarajan,et al.  Dynamic Linear Time Temporal Logic , 1997 .

[16]  Enrico Giunchiglia,et al.  Planning as Satisfiability with Expressive Action Languages: Concurrency, Constraints and Nondeterminism , 2000, KR.

[17]  Joël Ouaknine,et al.  Completeness and Complexity of Bounded Model Checking , 2004, VMCAI.

[18]  Michael Gelfond,et al.  Representing Action and Change by Logic Programs , 1993, J. Log. Program..

[19]  Armin Biere,et al.  Bounded model checking , 2003, Adv. Comput..

[20]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[21]  Franz Baader,et al.  Verifying Properties of Infinite Sequences of Description Logic Actions , 2010, ECAI.

[22]  Fahiem Bacchus,et al.  Planning for temporally extended goals , 1996, Annals of Mathematics and Artificial Intelligence.

[23]  Giuseppe De Giacomo,et al.  Generalized Planning with Loops under Strong Fairness Constraints , 2010, KR.

[24]  Cristina Baroglio,et al.  Behavior-Oriented Commitment-based Protocols , 2010, ECAI.

[25]  Laura Giordano,et al.  Specifying and verifying interaction protocols in a temporal action logic , 2007, J. Appl. Log..

[26]  Laura Giordano,et al.  Verifying Business Process Compliance by Reasoning about Actions , 2010, CLIMA.

[27]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.