Spherical and Hyperbolic Spin Networks: The q-extensions of Wigner-Racah 6j Coefficients and General Orthogonal Discrete Basis Sets in Applied Quantum Mechanics

Discrete basis sets continue to have an important role in mathematics and quantum mechanics. Racah recoupling coefficients or their closely related Wigner 6j symbols form a remarkably rich source of such functions, and now their properties are well understood for Euclidean space where \(q = 1\). Here we report a unified treatment of their q-extensions to non-Euclidean spaces: hyperbolic, for real q different from 1, and spherical, for \(q = r^{th}\) root of unity. We calculate the non-Euclidean coefficients as the eigenvectors of a real symmetric tridiagonal matrix. The eigenvectors form a discrete ortho-normal basis set, and the eigenvalues can be interpreted as energy levels. We provide extensive numerical results, and also show the Neville volume formula for a tetrahedron appears to be valid for both hyperbolic and spherical cases in the semiclassical limit. This q-extended volume is used to scale the magnitude of the eigenvectors in a familiar fashion. We also determine for spherical space that the radius, r, has a sharp minimum value to support all x,y given by triangular relations for a quadrilateral (not necessarily planar) with side lengths a, b, c, d and forming a tetrahedron. The ranges of x and y are truncated for \(r < a+b+c+d+2\).

[1]  Roger Anderson,et al.  Discrete Orthogonal Transformations Corresponding to the Discrete Polynomials of the Askey Scheme , 2014, ICCSA.

[2]  C. Daskaloyannis,et al.  Quantum groups and their applications in nuclear physics , 1999 .

[3]  Vincenzo Aquilanti,et al.  d-Dimensional Kepler–Coulomb Sturmians and Hyperspherical Harmonics as Complete Orthonormal Atomic and Molecular Orbitals , 2013 .

[4]  Vincenzo Aquilanti,et al.  Symmetric Angular Momentum Coupling, the Quantum Volume Operator and the 7-spin Network: A Computational Perspective , 2014, ICCSA.

[5]  I. Khavkine Recurrence relation for the 6j-symbol of suq(2) as a symmetric eigenvalue problem , 2010, 1009.2261.

[6]  Vincenzo Aquilanti,et al.  Semiclassical analysis of Wigner 3j-symbol , 2007, quant-ph/0703104.

[7]  Vincenzo Aquilanti,et al.  Exact and Asymptotic Computations of Elementary Spin Networks: Classification of the Quantum-Classical Boundaries , 2012, ICCSA.

[8]  Vincenzo Aquilanti,et al.  Exact Computation and Asymptotic Approximations of 6j Symbols: Illustration of Their Semiclassical Limits , 2010 .

[9]  M. A. Lohe,et al.  Quantum group symmetry and q-tensor algebras , 1995 .

[10]  Vincenzo Aquilanti,et al.  Spin-Coupling Diagrams and Incidence Geometry: A Note on Combinatorial and Quantum-Computational Aspects , 2016, ICCSA.

[11]  Vincenzo Aquilanti,et al.  The Screen Representation of Vector Coupling Coefficients or Wigner 3j Symbols: Exact Computation and Illustration of the Asymptotic Behavior , 2014, ICCSA.

[12]  V. Aquilanti,et al.  Hydrogenoid orbitals revisited: From Slater orbitals to Coulomb Sturmians# , 2012, Journal of Chemical Sciences.

[13]  Donald E. Neville,et al.  A Technique for Solving Recurrence Relations Approximately and Its Application to the 3‐J and 6‐J Symbols , 1971 .

[14]  Vincenzo Aquilanti,et al.  Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics: Hyperquantization algorithm , 2003 .

[15]  Vincenzo Aquilanti,et al.  Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials: a recursive algorithm , 2001 .

[16]  Vincenzo Aquilanti,et al.  Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications , 2009 .

[17]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[18]  Vladimir Turaev,et al.  State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .

[19]  Masahico Saito,et al.  The Classical and Quantum 6j-symbols. , 1995 .

[20]  Jun Murakami,et al.  Volume formulas for a spherical tetrahedron , 2010, 1011.2584.

[21]  Vincenzo Aquilanti,et al.  Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials , 2013, 1301.1949.

[22]  C. Woodward,et al.  6j symbols for $$U_q (\mathfrak{s}\mathfrak{l}_2 )$$ and non-Euclidean tetrahedra , 2006 .

[23]  Vincenzo Aquilanti,et al.  Exact computation and large angular momentum asymptotics of 3nj symbols: Semiclassical disentangling of spin networks. , 2008, The Journal of chemical physics.

[24]  Vincenzo Aquilanti,et al.  ANGULAR AND HYPERANGULAR MOMENTUM COUPLING COEFFICIENTS AS HAHN POLYNOMIALS , 1995 .

[25]  Vincenzo Aquilanti,et al.  Hyperangular Momentum: Applications to Atomic and Molecular Science , 1996 .

[26]  R. Littlejohn,et al.  Uniform semiclassical approximation for the Wigner 6j-symbol in terms of rotation matrices. , 2009, The journal of physical chemistry. A.

[27]  Vincenzo Aquilanti,et al.  The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets , 1997 .

[28]  P. A. Braun Discrete semiclassical methods in the theory of Rydberg atoms in external fields , 1993 .

[29]  Vincenzo Aquilanti,et al.  3nj-symbols and harmonic superposition coefficients: an icosahedral abacus , 2001 .

[30]  Vincenzo Aquilanti,et al.  Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases , 1998 .

[31]  Mizoguchi,et al.  Three-dimensional gravity from the Turaev-Viro invariant. , 1992, Physical review letters.

[32]  Vincenzo Aquilanti,et al.  Couplings and recouplings of four angular momenta: Alternative 9j symbols and spin addition diagrams , 2017, Journal of Molecular Modeling.

[33]  Vincenzo Aquilanti,et al.  Hyperspherical harmonics as Sturmian orbitals in momentum space: A systematic approach to the few-body Coulomb problem , 2001 .

[34]  Vincenzo Aquilanti,et al.  3nj Morphogenesis and semiclassical disentangling. , 2009, The journal of physical chemistry. A.

[35]  Vincenzo Aquilanti,et al.  The Screen Representation of Spin Networks: Images of 6j Symbols and Semiclassical Features , 2013, ICCSA.

[36]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[37]  Vincenzo Aquilanti,et al.  The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. , 2006, The Journal of chemical physics.

[38]  Vincenzo Aquilanti,et al.  Alternative Sturmian bases and momentum space orbitals: an application to the hydrogen molecular ion , 1996 .

[39]  Vincenzo Aquilanti,et al.  The Screen Representation of Spin Networks: 2D Recurrence, Eigenvalue Equation for 6j Symbols, Geometric Interpretation and Hamiltonian Dynamics , 2013, ICCSA.

[40]  Vincenzo Aquilanti,et al.  Hydrogenic orbitals in Momentum space and hyperspherical harmonics: Elliptic Sturmian basis sets , 2003 .

[41]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[42]  Vincenzo Aquilanti,et al.  Harmonic analysis and discrete polynomials. From semiclassical angular momentum theory to the hyperquantization algorithm , 2000 .