RF Front-End Circuits and Architectures for IoT/LTE-A/5G Connectivity

[1]  Y. Akaiwa,et al.  Wideband Digital Predistortion Using Spectral Extrapolation of Band-Limited Feedback Signal , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  K. Feher,et al.  An ultra-fast carrier recovery versus traditional synchronizers , 1996 .

[3]  Lei Guan,et al.  Band-Limited Volterra Series-Based Digital Predistortion for Wideband RF Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[4]  A. Zhu,et al.  Dynamic Deviation Reduction-Based Volterra Behavioral Modeling of RF Power Amplifiers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[5]  Peter Asbeck,et al.  15 GHz 25 dBm multigate-cell stacked CMOS power amplifier with 32 % PAE and ≥ 30 dB gain for 5G applications , 2016, 2016 11th European Microwave Integrated Circuits Conference (EuMIC).

[6]  Yan Li,et al.  A highly integrated multiband LTE SiGe power amplifier for envelope tracking , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[7]  Wen-Kai Wang,et al.  Full ETSI E-Band Doubler, Quadrupler and 24 dBm Power Amplifier , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[8]  Fadhel M. Ghannouchi,et al.  Low Feedback Sampling Rate Digital Predistortion for Wideband Wireless Transmitters , 2016, IEEE Transactions on Microwave Theory and Techniques.

[9]  J. Lopez,et al.  A short survey on recent highly efficient cm-Wave 5G linear power amplifier design , 2017, 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS).

[10]  Tzyy-Sheng Horng,et al.  Enhancement of Frequency Synthesizer Operating Range Using a Novel Frequency-Offset Technique for LTE-A and CR Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[11]  Youxi Tang,et al.  A General Digital Predistortion Architecture Using Constrained Feedback Bandwidth for Wideband Power Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[12]  Olivier Seller,et al.  IoT: The era of LPWAN is starting now , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[13]  Navrati Saxena,et al.  Next Generation 5G Wireless Networks: A Comprehensive Survey , 2016, IEEE Communications Surveys & Tutorials.

[14]  Yan Li,et al.  Recent progress on high-efficiency CMOS and SiGe RF power amplifier design , 2016, 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR).

[15]  Jonathan Wells,et al.  Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications , 2010 .

[16]  Gang Li,et al.  A random demodulation based reduced sampling rate method for wideband digital predistortion , 2015, 2015 Asia-Pacific Microwave Conference (APMC).

[17]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[18]  Jaehyeong Kim,et al.  A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers , 2006, IEEE Transactions on Signal Processing.

[19]  Yan Li,et al.  A SiGe Envelope-Tracking Power Amplifier With an Integrated CMOS Envelope Modulator for Mobile WiMAX/3GPP LTE Transmitters , 2011, IEEE Transactions on Microwave Theory and Techniques.

[20]  Gin-Kou Ma,et al.  Design of Highly Efficient Wideband RF Polar Transmitters Using the Envelope-Tracking Technique , 2009, IEEE Journal of Solid-State Circuits.

[21]  F.M. Ghannouchi,et al.  Behavioral modeling and predistortion , 2009, IEEE Microwave Magazine.

[22]  Ronan Farrell,et al.  Generalised digital predistortion of RF power amplifiers with low-rate feedback signal , 2016, 2016 46th European Microwave Conference (EuMC).

[23]  Lisa Dresner,et al.  Lte And The Evolution To 4g Wireless Design And Measurement Challenges , 2016 .

[24]  Yue Chen,et al.  A 3.5–6.8GHz wide-bandwidth DTC-assisted fractional-N all-digital PLL with a MASH ΔΣ TDC for low in-band phase noise , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[25]  A. Margomenos,et al.  92–96 GHz GaN power amplifiers , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[26]  S. M. Alavi,et al.  All-Digital I/Q RF-DAC , 2014 .

[27]  Zoya Popovic,et al.  Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies , 2017, IEEE Microwave Magazine.

[28]  Lei Guan,et al.  Bandwidth-constrained least squares-based model extraction for band-limited digital predistortion of RF power amplifiers , 2012, 2012 Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits.

[29]  Gabriel M. Rebeiz,et al.  A 70–80-GHz SiGe Amplifier With Peak Output Power of 27.3 dBm , 2016, IEEE Transactions on Microwave Theory and Techniques.

[30]  A. K. Ezzeddine,et al.  The high voltage/high power FET (HiVP) , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[31]  Sasha N. Oster,et al.  Ultra-thin dual polarized millimeter-wave phased array system-in-package with embedded transceiver chip , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[32]  Harish Krishnaswamy,et al.  Large-Scale Power Combining and Mixed-Signal Linearizing Architectures for Watt-Class mmWave CMOS Power Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[33]  Stefan Parkvall,et al.  5G wireless access: requirements and realization , 2014, IEEE Communications Magazine.

[34]  A. Mazzanti,et al.  Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise , 2008, IEEE Journal of Solid-State Circuits.

[35]  Pietro Andreani,et al.  A 2.4-GHz CMOS monolithic VCO based on an MOS varactor , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[36]  Yi Zhao,et al.  A Wideband, Dual-Path, Millimeter-Wave Power Amplifier With 20 dBm Output Power and PAE Above 15% in 130 nm SiGe-BiCMOS , 2012, IEEE Journal of Solid-State Circuits.

[37]  Sataporn Pornpromlikit,et al.  A CMOS 45 GHz power amplifier with output power > 600 mW using spatial power combining , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[38]  Patrick Mitran,et al.  Digital Predistortion Function Synthesis using Undersampled Feedback Signal , 2016, IEEE Microwave and Wireless Components Letters.

[39]  Keigo Nakatani,et al.  Highly integrated RF frontend module for high SHF wide-band massive MIMO in 5G, and switching-mode amplifiers beyond 4G , 2017, 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).

[40]  Anding Zhu,et al.  Digital Predistortion for Envelope-Tracking Power Amplifiers Using Decomposed Piecewise Volterra Series , 2008, IEEE Transactions on Microwave Theory and Techniques.

[41]  Zach Griffith,et al.  71–95 GHz (23–40% PAE) and 96–120 GHz (19–22% PAE) high efficiency 100–130 mW power amplifiers in InP HBT , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[42]  James J. Komiak,et al.  Microwave and millimeter wave power amplifiers: Technology, applications, benchmarks, future trends , 2016, 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[43]  L. Richard Carley,et al.  A 0.7W fully integrated 42GHz power amplifier with 10% PAE in 0.13µm SiGe BiCMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[44]  Lee Y.-J.,et al.  A 2GHz 16dBm IIP3 low noise amplifier in 0.25um CMOS technology , 2003 .

[45]  Jungsang Kim,et al.  Digital predistortion of wideband signals based on power amplifier model with memory , 2001 .

[46]  Ronan Farrell,et al.  Undersampling Observation-Based Compact Digital Predistortion for Single-Chain Multiband and Wideband Direct-to-RF Transmitter , 2017, IEEE Transactions on Microwave Theory and Techniques.

[47]  R. de Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.

[48]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[49]  Steve C Cripps,et al.  Rf power amplifier for wireless communications , 2014 .

[50]  Masaru Sato,et al.  3.6 W/mm high power density W-band InAlGaN/GaN HEMT MMIC power amplifier , 2016, 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR).

[51]  Chorng-Kuang Wang,et al.  FPGA Prototype for WLAN OFDM Baseband with STPE of I/Q Mismatch Self Calibration Algorithm , 2005, 2005 IEEE Asian Solid-State Circuits Conference.

[52]  Tzyy-Sheng Horng,et al.  Optimization of Phase Noise in a 2:3 » 3:5GHz Voltage-controlled Oscillator Using the Impedance Locus , 2012 .

[53]  Alyosha C. Molnar,et al.  A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface , 2010, IEEE Journal of Solid-State Circuits.

[54]  Edmar Camargo,et al.  Power GaAs MMICs for E-band communications applications , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[55]  Zoya Popovic,et al.  GaN power amplifiers with supply modulation , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[56]  Pietro Andreani,et al.  A high-swing complementary class-C VCO , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[57]  Sherif Shakib,et al.  20.6 A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[58]  Morteza Abbasi,et al.  A 75–90 GHz high linearity MMIC power amplifier with integrated output power detector , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[59]  Sung-Mo Kang,et al.  Low-power 2.4GHz CMOS frequency synthesizer with differentially controlled MOS varactors , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[60]  W. Schlecker,et al.  Analog IQ impairments in Zero-IF radar receivers: Analysis, measurements and digital compensation , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[61]  Minyoung Park,et al.  IEEE 802.11ah: sub-1-GHz license-exempt operation for the internet of things , 2015, IEEE Communications Magazine.

[62]  Fabio Filicori,et al.  Envelope Tracking of an RF High Power Amplifier With an 8-Level Digitally Controlled GaN-on-Si Supply Modulator , 2015, IEEE Transactions on Microwave Theory and Techniques.

[63]  Youxi Tang,et al.  A New Digital Predistortion for Wideband Power Amplifiers With Constrained Feedback Bandwidth , 2013, IEEE Microwave and Wireless Components Letters.

[64]  Namsoo Kim,et al.  A 1.8 dB NF Blocker-Filtering Noise-Canceling Wideband Receiver With Shared TIA in 40 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[65]  A. Grebennikov,et al.  A Dual-Band Parallel Doherty Power Amplifier for Wireless Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[66]  D. Y. C. Lie,et al.  A highly efficient and linear 15 GHz GaN power amplifier design for 5G communications , 2017, 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS).

[67]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[68]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[69]  H. Vincent Poor,et al.  Application of Non-Orthogonal Multiple Access in LTE and 5G Networks , 2015, IEEE Communications Magazine.

[70]  Ahmad Mirzaei,et al.  Analysis and Optimization of Direct-Conversion Receivers With 25% Duty-Cycle Current-Driven Passive Mixers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[71]  Patrick Reynaert,et al.  A 40-nm CMOS E-Band 4-Way Power Amplifier With Neutralized Bootstrapped Cascode Amplifier and Optimum Passive Circuits , 2015, IEEE Transactions on Microwave Theory and Techniques.

[72]  Keigo Nakatani,et al.  A highly integrated RF frontend module including Doherty PA, LNA and switch for high SHF wide-band massive MIMO in 5G , 2017, 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR).

[73]  Mark Yeck,et al.  7.2 A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[74]  Howard C. Luong,et al.  A WCDMA/WLAN Digital Polar Transmitter With Low-Noise ADPLL, Wideband PM/AM Modulator, and Linearized PA , 2015, IEEE Journal of Solid-State Circuits.

[75]  Jinho Jeong,et al.  A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[76]  Yan Li,et al.  High-Efficiency Silicon-Based Envelope-Tracking Power Amplifier Design With Envelope Shaping for Broadband Wireless Applications , 2013, IEEE Journal of Solid-State Circuits.

[77]  James F. Buckwalter,et al.  A PMOS mm-wave power amplifier at 77 GHz with 90 mW output power and 24% efficiency , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[78]  Chorng-Kuang Wang,et al.  A 1V 19.3dBm 79GHz power amplifier in 65nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[79]  Hongyu Zhou,et al.  A Fully Integrated Ka-Band Front End for 5G Transceiver , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[80]  Zach Griffith,et al.  340-440mW Broadband, High-Efficiency E-Band PA's in InP HBT , 2015, 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[81]  Ahmed Elkholy,et al.  10.7 A 6.75-to-8.25GHz 2.25mW 190fsrms integrated-jitter PVT-insensitive injection-locked clock multiplier using all-digital continuous frequency-tracking loop in 65nm CMOS , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[82]  M. Buchholz,et al.  Effects of tuner IQ imbalance on multicarrier-modulation systems , 2000, Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474).

[83]  Amitava Ghosh,et al.  NB-IoT system for M2M communication , 2016, 2016 IEEE Wireless Communications and Networking Conference.

[84]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[85]  Tomoya Kaneko,et al.  GaN HEMT high efficiency power amplifiers for 4G/5G mobile communication base stations , 2014, 2014 Asia-Pacific Microwave Conference.

[86]  Peter M. Asbeck,et al.  Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[87]  Pietro Andreani,et al.  A Push–Pull Class-C CMOS VCO , 2013, IEEE Journal of Solid-State Circuits.

[88]  Gabriel M. Rebeiz,et al.  Transmission of Signals With Complex Constellations Using Millimeter-Wave Spatially Power-Combined CMOS Power Amplifiers and Digital Predistortion , 2015, IEEE Transactions on Microwave Theory and Techniques.

[89]  Poras T. Balsara,et al.  Code-Aided Adaptive Decorrelator for IQ Imbalance Compensation in Iterative Receivers for Flat Fading Channels , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[90]  John Wood,et al.  System-Level Design Considerations for Digital Pre-Distortion of Wireless Base Station Transmitters , 2017, IEEE Transactions on Microwave Theory and Techniques.

[91]  Marco Luise,et al.  Efficient compensation of I/Q phase imbalance for digital receivers , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[92]  P. M. Asbeck,et al.  Linear operation of high-power millimeter-wave stacked-FET PAs in CMOS SOI , 2012, 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS).

[93]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[94]  Baoyong Chi,et al.  A Low-Power NB-IoT Transceiver With Digital-Polar Transmitter in 180-nm CMOS , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[95]  Fabrizio Palma,et al.  A Harmonic Class-C CMOS VCO-Based on Low Frequency Feedback Loop: Theoretical Analysis and Experimental Results , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[96]  José Silva-Martínez,et al.  Low-Power, Low-Cost CMOS Direct-Conversion Receiver Front-End for Multistandard Applications , 2013, IEEE Journal of Solid-State Circuits.

[97]  Michael J. Marcus,et al.  5G and "IMT for 2020 and beyond" [Spectrum Policy and Regulatory Issues] , 2015, IEEE Wireless Communications.

[98]  Liang-Hung Lu,et al.  A Low-Power Quadrature VCO and Its Application to a 0.6-V 2.4-GHz PLL , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[99]  Ahmad Mirzaei,et al.  A blocker-tolerant wideband noise-cancelling receiver with a 2dB noise figure , 2012, 2012 IEEE International Solid-State Circuits Conference.

[100]  John P. Costas,et al.  Synchronous Communications , 1956, Proceedings of the IRE.

[101]  Anding Zhu,et al.  A Modified Decomposed Vector Rotation-Based Behavioral Model With Efficient Hardware Implementation for Digital Predistortion of RF Power Amplifiers , 2017, IEEE Transactions on Microwave Theory and Techniques.

[102]  Zoya Popovic,et al.  ET Comes of Age: Envelope Tracking for Higher-Efficiency Power Amplifiers , 2016, IEEE Microwave Magazine.

[103]  Abhishek Agrawal,et al.  A High-IIP3 Third-Order Elliptic Filter With Current-Efficient Feedforward-Compensated Opamps , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[104]  A. Zhu Decomposed Vector Rotation-Based Behavioral Modeling for Digital Predistortion of RF Power Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[105]  Kenichi Okada,et al.  A 2.2 GHz -242 dB-FOM 4.2 mW ADC-PLL Using Digital Sub-Sampling Architecture , 2016, IEEE Journal of Solid-State Circuits.

[106]  Kang-Chun Peng,et al.  A 5 GHz CMOS quadrature VCO with precise quadrature phase , 2012, 2012 Asia Pacific Microwave Conference Proceedings.

[107]  Tzyy-Sheng Horng,et al.  Cognitive Polar Receiver Using Two Injection-Locked Oscillator Stages , 2011, IEEE Transactions on Microwave Theory and Techniques.