Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom

[1]  G. Öquist,et al.  Photosystem II reaction centres stay intact during low temperature photoinhibition , 1993, Photosynthesis Research.

[2]  C. Giersch,et al.  A simple model relating photoinhibitory fluorescence quenching in chloroplasts to a population of altered Photosystem II reaction centers , 1991, Photosynthesis Research.

[3]  J. Briantais,et al.  The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves , 1990, Photosynthesis Research.

[4]  W. W. Adams,et al.  The carotenoid zeaxanthin and ‘high-energy-state quenching’ of chlorophyll fluorescence , 1990, Photosynthesis Research.

[5]  Wolfgang Bilger,et al.  Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis , 1990, Photosynthesis Research.

[6]  A. Gilmore,et al.  Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching , 2004, Photosynthesis Research.

[7]  M. Olaizola,et al.  SHORT‐TERM RESPONSE OF THE DIADINOXANTHIN CYCLE AND FLUORESCENCE YIELD TO HIGH IRRADIANCE IN CHAETOCEROS MUELLERI (BACILLARIOPHYCEAE) 1 , 1994 .

[8]  Paul G. Falkowski,et al.  Photoinhibition of Photosynthesis in Nature , 1994 .

[9]  P. Falkowski,et al.  Light utilization and photoinhibition of photosynthesis in marine phytoplankton , 1993 .

[10]  R. Geider,et al.  RESPONSE OF THE PHOTOSYNTHETIC APPARATUS OF PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE) TO NITRATE, PHOSPHATE, OR IRON STARVATION 1 , 1993 .

[11]  W. W. Adams III,et al.  The Xanthophyll Cycle, Protein Turnover, and the High Light Tolerance of Sun-Acclimated Leaves , 1993, Plant physiology.

[12]  T. G. Owens,et al.  Photochemical and Nonphotochemical Fluorescence Quenching Processes in the Diatom Phaeodactylum tricornutum , 1993, Plant physiology.

[13]  G. Britton Biosynthesis of carotenoids , 1993 .

[14]  I. Moya,et al.  Energy-dependent quenching of chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and Photosystem II preparations , 1992 .

[15]  I. Vass,et al.  Photodamage to photosystem II : Primary and secondary events , 1992 .

[16]  M. Olaizola,et al.  Pigment analysis of phytoplankton during a subarctic spring bloom: xanthophyll cycling☆ , 1992 .

[17]  A. Gilmore,et al.  Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Falkowski Molecular Ecology of Phytoplankton Photosynthesis , 1992 .

[19]  K. Okada,et al.  Chloramphenicol is an inhibitor of photosynthesis , 1991, FEBS letters.

[20]  P. Falkowski,et al.  Effect of iron limitation on photosynthesis in a marine diatom , 1991 .

[21]  A. Gilmore,et al.  Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport. , 1991, Plant physiology.

[22]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[23]  P. Falkowski,et al.  Molecular Biology in Studies of Ocean Processes , 1991 .

[24]  Suzanne Roy,et al.  Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillario-phyceae): a photo-protection mechanism , 1991 .

[25]  Barbara Demmig-Adams,et al.  Carotenoids and photoprotection in plants : a role for the xanthophyll zeaxanthin , 1990 .

[26]  W. W. Adams,et al.  Relative contributions of zeaxanthin-related and zeaxanthin-unrelated types of ;high-energy-state' quenching of chlorophyll fluorescence in spinach leaves exposed to various environmental conditions. , 1990, Plant physiology.

[27]  W. Bilger,et al.  Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. , 1989, Plant physiology.

[28]  P. Falkowski,et al.  NITROGEN LIMITATION IN ISOCHRYSIS GALBANA (HAPTOPHYCEAE). II. RELATIVE ABUNDANCE OF CHLOROPLAST PROTEINS 1 , 1989 .

[29]  N. L. Greenbaum,et al.  The absolute size of a photosynthetic unit , 1989 .

[30]  P. Falkowski,et al.  Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II. , 1988, Plant physiology.

[31]  S. W. Jeffrey,et al.  PHOTOSYNTHETIC PIGMENTS IN FIFTY‐ONE SPECIES OF MARINE DIATOMS 1 , 1988 .

[32]  Joseph A. Berry,et al.  Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence , 1987 .

[33]  K. Winter,et al.  Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy. , 1987, Plant physiology.

[34]  Paul G. Falkowski,et al.  Relationship of steady-state photosynthesis to fluorescence in eucaryotic algae , 1986 .

[35]  J. Raven,et al.  GROWTH, PHOTOSYNTHESIS AND MAINTENANCE METABOLIC COST IN THE DIATOM PHAEODACTYLUM TRICORNUTUM AT VERY LOW LIGHT LEVELS 1 , 1986 .

[36]  D. M. Harrison The biosynthesis of carotenoids. , 1986, Natural product reports.

[37]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[38]  Harry Y. Yamamoto,et al.  [34] Xanthophyll cycles , 1985 .

[39]  EVIDENCE FOR A HETEROGENOUS ORGANIZATION OF VIOLAXANTHIN IN THYLAKOID MEMBRANES , 1984 .

[40]  G. Jenkins,et al.  Differential regulation of the accumulation of the light‐harvesting chlorophyll a/b complex and ribulose bisphosphate carboxylase/oxygenase in greening pea leaves , 1984, Journal of cellular biochemistry.

[41]  Ann E. Gargett,et al.  Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean , 1983 .

[42]  P. Falkowski Light-shade adaptation and vertical mixing of marine phytoplankton : a comparative field study , 1983 .

[43]  C. Llewellyn,et al.  The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography , 1983 .

[44]  A. Ley,et al.  Absolute absorption cross-sections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris , 1982 .

[45]  A. Hager The Reversible, Light-Induced Conversions of Xanthophylls in the Chloroplast , 1981, Pigments in Plants.

[46]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. C. Goldman,et al.  Steady state growth and ammonium uptake of a fast‐growing marine diatom 1 , 1978 .

[48]  Warren L. Butler,et al.  Energy Distribution in the Photochemical Apparatus of Photosynthesis , 1978 .

[49]  T. V. Marsho,et al.  Ascorbate-independent carotenoid de-epoxidation in intact spinach chloroplasts. , 1976, Biochimica et biophysica acta.

[50]  H. Yamamoto,et al.  The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. , 1972, Biochimica et biophysica acta.

[51]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[52]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.