A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gaus–Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

[1]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[2]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[3]  Jens Lang,et al.  Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.

[4]  Gerd Kunert Robust a Posteriori Error Estimation for a Singularly Perturbed Reaction–Diffusion Equation on Anisotropic Tetrahedral Meshes , 2001, Adv. Comput. Math..

[5]  Jeffrey S. Ovall F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions * , 2022 .

[6]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[7]  Arnd Meyer,et al.  A new methodology for anisotropic mesh refinement based upon error gradients , 2004 .

[8]  Yuri V. Vassilevski,et al.  Generation of Quasi-Optimal Meshes Based on a Posteriori Error Estimates , 2007, IMR.

[9]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..

[10]  S. SIAMJ. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .

[11]  Weizhang Huang,et al.  A two-dimensional moving finite element method with local refinement based on a posteriori error estimates , 2003 .

[12]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[13]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[14]  Yu. V. Vasilevskii,et al.  An adaptive algorithm for quasioptimal mesh generation , 1999 .

[15]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[16]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[17]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[18]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[19]  Leszek Demkowicz,et al.  Integration of hp-adaptivity and a two-grid solver for elliptic problems , 2006 .

[20]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[21]  Weizhang Huang,et al.  Variational mesh adaptation II: error estimates and monitor functions , 2003 .

[22]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[23]  E. F. D’Azevedo,et al.  Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..

[24]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[25]  Robert D. Russell,et al.  Comparison of two-dimensional r -adaptive finite element methods using various error indicators , 2001 .

[26]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[27]  J. Dompierre,et al.  Numerical comparison of some Hessian recovery techniques , 2007 .

[28]  Christoph Pflaum,et al.  On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .

[29]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[30]  Abdellatif Agouzal,et al.  Some remarks about the hierarchical a posteriori error estimate , 2004 .

[31]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[32]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .