A Comparison of Error Indicators for Multilevel Visualization on Nested Grids

Multiresolution visualization methods have recently become an indispensable ingredient of real time interactive post processing. Here local error indicators serve as criteria where to reene the data representation on the physical domain. In this article we give an overview on diierent types of error measurement on nested grids and compare them for selected applications in 2D as well as in 3D. Furthermore, it is pointed out that a certain saturation of the considered error indicator plays an important role in multilevel visualization and can be reused for the evaluation of data bounds in hierarchical searching or for a multilevel backface culling of isosurfaces.

[1]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[2]  Thomas Ertl,et al.  The multilevel finite element method for adaptive mesh optimization and visualization of volume data , 1997 .

[3]  M. Gross,et al.  Fast multiresolution surface meshing , 1995, Proceedings Visualization '95.

[4]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[5]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[6]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[7]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[8]  Martin Rumpf,et al.  Efficient Visualization of Large - Scale Data on Hierarchical Meshes , 1997, Visualization in Scientific Computing.

[9]  Reinhard Klein,et al.  Mesh reduction with error control , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[10]  Leila De Floriani,et al.  Multiresolution modeling and visualization of volume data based on simplicial complexes , 1994, VVS '94.

[11]  T. Gerstner,et al.  Adaptive hierarchical methods for landscape representation and analysis , 1999 .

[12]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[13]  Paolo Cignoni,et al.  Magicsphere: an insight tool for 3D data visualization , 1994, Comput. Graph. Forum.

[14]  Jiann-Liang Chen,et al.  Data point selection for piecewise trilinear approximation , 1994, Comput. Aided Geom. Des..

[15]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[16]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[17]  Leila De Floriani,et al.  Building and traversing a surface at variable resolution , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[18]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[19]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[20]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.