Subduction and collision processes in the Central Andes constrained by converted seismic phases

[1]  L. Ratschbacher,et al.  Hot and dry deep crustal xenoliths from tibet , 2000, Science.

[2]  G. Asch,et al.  Three‐dimensional models of P wave velocity and P‐to‐S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data , 1999 .

[3]  J. Viramonte,et al.  Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina , 1999 .

[4]  C. Haberland,et al.  The Central Andean Altiplano‐Puna magma body , 1999 .

[5]  F. Schilling,et al.  Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity , 1999 .

[6]  Sobolev,et al.  Seismic Evidence for a Detached Indian Lithospheric Mantle Beneath Tibet. , 1999, Science.

[7]  J. Kley,et al.  Tectonic shortening and crustal thickness in the Central Andes: How good is the correlation? , 1998 .

[8]  E. Engdahl,et al.  Global teleseismic earthquake relocation with improved travel times and procedures for depth determination , 1998, Bulletin of the Seismological Society of America.

[9]  R. Phinney,et al.  Seismic structure of the lithosphere from teleseismic converted arrivals observed at small arrays in the southern Sierra Nevada and vicinity, California , 1998 .

[10]  E. Sandvol,et al.  Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment , 1997 .

[11]  S. Kay,et al.  THE EVOLUTION OF THE ALTIPLANO-PUNA PLATEAU OF THE CENTRAL ANDES , 1997 .

[12]  Wenjin Zhao,et al.  Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet , 1996, Science.

[13]  Handong Tan,et al.  Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results , 1996, Science.

[14]  R. Allmendinger,et al.  Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia , 1996 .

[15]  S. Myers,et al.  Crustal-thickness variations in the central Andes , 1996 .

[16]  G. Zandt,et al.  Composition and thickness of the southern Altiplano crust , 1994 .

[17]  Stephan V. Sobolev,et al.  Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks , 1994 .

[18]  S. Peacock The importance of blueschist → eclogite dehydration reactions in subducting oceanic crust , 1993 .

[19]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[20]  Thomas A. Cahill,et al.  Seismicity and shape of the subducted Nazca Plate , 1992 .

[21]  J. Cassidy,et al.  Numerical experiments in broadband receiver function analysis , 1992, Bulletin of the Seismological Society of America.

[22]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[23]  B. Isacks Uplift of the Central Andean Plateau and bending of the Bolivian orocline , 1988 .

[24]  T. J. Owens A Detailed Analysis of Broadband Teleseismic P Waveforms , 1984 .

[25]  D. James Andean crustal and upper mantle structure , 1971 .

[26]  O. Oncken,et al.  Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle , 1999 .

[27]  M. Ford,et al.  Orogeny through time , 1997 .

[28]  G. Bebout Subduction top to bottom , 1996 .

[29]  J. Viramonte,et al.  Variation in the Crustal Structure of the Southern Central Andes Deduced from Seismic Refraction Investigations , 1994 .

[30]  K. Reutter,et al.  Tectonics of the Southern Central Andes , 1994 .