Looking Back on Inverse Scattering Theory

We present an essay on the mathematical development of inverse scattering theory for time-harmonic waves over the past fifty years together with some personal memories of our participation in these...

[1]  Charbel Farhat,et al.  On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method , 2002 .

[2]  P Hahner,et al.  A uniqueness theorem for a transmission problem in inverse electromagnetic scattering , 1993 .

[3]  Petri Ola,et al.  An inverse boundary value problem in electrodynamics , 1993 .

[4]  F. Natterer,et al.  A propagation-backpropagation method for ultrasound tomography , 1995 .

[5]  M. Klibanov,et al.  Iterative method for multi-dimensional inverse scattering problems at fixed frequencies , 1994 .

[6]  G. Feijoo,et al.  A new method in inverse scattering based on the topological derivative , 2004 .

[7]  Jun Zou,et al.  Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers , 2006 .

[8]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[9]  Peter Monk,et al.  A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium , 1992 .

[10]  Rainer Kress,et al.  On uniqueness in inverse obstacle scattering , 1993 .

[11]  Matthias Vögeler,et al.  Reconstruction of the three-dimensional refractive index in electromagnetic scattering by using a propagation-backpropagation method , 2003 .

[12]  David Colton,et al.  Uniqueness Theorems for the Inverse Problem of Acoustic Scattering , 1983 .

[13]  Dominique Lesselier,et al.  Level set methods for inverse scattering—some recent developments , 2009 .

[14]  Peter Hähner,et al.  On the uniqueness of the shape of a penetrable, anisotropic obstacle , 2000 .

[15]  Evgeny Lakshtanov,et al.  Sharp Weyl Law for Signed Counting Function of Positive Interior Transmission Eigenvalues , 2014, SIAM J. Math. Anal..

[16]  Jun Zou,et al.  Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering , 2007 .

[17]  Houssem Haddar,et al.  A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements , 2014 .

[18]  Peter Monk,et al.  The linear sampling method for solving the electromagnetic inverse medium problem , 2002 .

[19]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[20]  Rainer Kress,et al.  Inverse scattering from an open arc , 1995 .

[21]  Rainer Kress,et al.  Uniqueness in inverse obstacle scattering (acoustics) , 1993 .

[22]  Frédérique Le Louër,et al.  Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems , 2016 .

[23]  David Colton,et al.  The uniqueness of a solution to an inverse scattering problem for electromagnetic waves , 1992 .

[24]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[25]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[26]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[27]  Yu Chen,et al.  Inverse scattering via Heisenberg's uncertainty principle , 1996 .

[28]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[29]  Drossos Gintides,et al.  Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality , 2005 .

[30]  Fioralba Cakoni,et al.  Inverse scattering theory and transmission eigenvalues , 2016 .

[31]  Rainer Kress,et al.  On the Far Field in Obstacle Scattering , 1999, SIAM J. Appl. Math..

[32]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[33]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[34]  Gang Bao,et al.  Inverse Medium Scattering Problems for Electromagnetic Waves , 2005, SIAM J. Appl. Math..

[35]  G. Bao,et al.  Inverse medium scattering for the Helmholtz equation at fixed frequency , 2005 .

[36]  Frédérique Le Louër,et al.  On the Fréchet Derivative in Elastic Obstacle Scattering , 2011, SIAM J. Appl. Math..

[37]  Fioralba Cakoni,et al.  A UNIQUENESS THEOREM FOR AN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM IN INHOMOGENEOUS ANISOTROPIC MEDIA , 2003, Proceedings of the Edinburgh Mathematical Society.

[38]  A. Kirsch Remarks on the Born approximation and the Factorization Method , 2017 .

[39]  Georgi Vodev,et al.  Transmission Eigenvalue-Free Regions , 2014, 1401.1627.

[40]  David Colton,et al.  Dense Sets and Far Field Patterns in Acoustic Wave Propagation , 1984 .

[41]  V. Edwards Scattering Theory , 1973, Nature.

[42]  G. Alessandrini,et al.  Corrigendum to ``Determining a sound-soft polyhedral scatterer by a single far-field measurement'' , 2003, math/0307004.

[43]  Steven Kusiak,et al.  The scattering support , 2003 .

[44]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[45]  Rainer Kress,et al.  Newton’s method for inverse obstacle scattering meets the method of least squares , 2003 .

[46]  R. Potthast Point Sources and Multipoles in Inverse Scattering Theory , 2018 .

[47]  David Colton,et al.  Dense sets and far field patterns for acoustic waves in an inhomogeneous medium , 1988, Proceedings of the Edinburgh Mathematical Society.

[48]  Fioralba Cakoni,et al.  Transmission Eigenvalues , 2021, Applied Mathematical Sciences.

[49]  Brian D. Sleeman,et al.  Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern , 2007 .

[50]  Armin Lechleiter,et al.  The linear sampling method revisited , 2009 .

[51]  A. G. Ramm,et al.  Recovery of the potential from fixed-energy scattering data , 1988 .

[52]  Helmut Harbrecht,et al.  Fast Methods for Three-dimensional Inverse Obstacle Scattering Problems , 2007 .

[53]  Frederick Gylys-Colwell,et al.  An inverse problem for the Helmholtz equation , 1996 .

[54]  Thorsten Hohage,et al.  New Stability Estimates for the Inverse Acoustic Inhomogeneous Medium Problem and Applications , 2001, SIAM J. Math. Anal..

[55]  T. Arens,et al.  Why linear sampling works , 2004 .

[56]  Fioralba Cakoni,et al.  Acoustic inverse scattering using topological derivative of far-field measurements-based L2 cost functionals , 2013 .

[57]  Roland Potthast,et al.  Stability estimates and reconstructions in inverse acoustic scattering using singular sources , 2000 .

[58]  Andreas Kirsch,et al.  The Denseness of the Far Field Patterns for the Transmission Problem , 1986 .

[59]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[60]  Georgi Vodev,et al.  High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues , 2017, 1701.04668.

[61]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[62]  R. Kleinman,et al.  An inverse transmission problem for the Helmholtz equation , 1987 .

[63]  Evgeny Lakshtanov,et al.  Ellipticity in the Interior Transmission Problem in Anisotropic Media , 2012, SIAM J. Math. Anal..

[64]  Changmei Liu,et al.  Inverse obstacle problem: Local uniqueness for rougher obstacles and the identification of a ball , 1997 .

[65]  Roland Potthast,et al.  A fast new method to solve inverse scattering problems , 1996 .

[66]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[67]  Rainer Kress,et al.  On an Integral Equation of the first Kind in Inverse Acoustic Scattering , 1986 .

[68]  Rainer Kress,et al.  NONLINEAR INTEGRAL EQUATIONS IN INVERSE OBSTACLE SCATTERING , 2006 .

[69]  R. Mittra,et al.  The two-dimensional inverse scattering problem , 1970 .

[70]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[71]  M. Burger A level set method for inverse problems , 2001 .

[72]  Roland Potthast,et al.  Frechet differentiability of boundary integral operators in inverse acoustic scattering , 1994 .

[73]  Andreas Kirsch,et al.  Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .

[74]  Jin Cheng,et al.  Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves , 2005 .

[75]  Lars Mönch,et al.  On the inverse acoustic scattering problem by an open arc: the sound-hard case , 1997 .

[76]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[77]  A. Roger,et al.  Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem , 1981 .

[78]  M. Tadia,et al.  An inverse problem for Helmholtz equation , 2012 .

[79]  Thorsten Hohage,et al.  Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem , 2006, J. Comput. Phys..

[80]  Peter Monk,et al.  The Linear Sampling Method in Inverse Electromagnetic Scattering , 2010 .

[81]  J. Sylvester Notions of support for far fields , 2006 .

[82]  Thorsten Hohage,et al.  On the numerical solution of a three-dimensional inverse medium scattering problem , 2001 .

[83]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[84]  Victor Isakov,et al.  On uniqueness in th invese transmission scattering problem , 1990 .

[85]  John C. Schotland,et al.  Inverse Born Series for Diffuse Waves , 2009 .

[86]  Houssem Haddar,et al.  On the Fréchet Derivative for Obstacle Scattering with an Impedance Boundary Condition , 2004, SIAM J. Appl. Math..

[87]  J Blohbaum,et al.  Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering , 1989 .

[88]  R. Kress,et al.  Nonlinear integral equations and the iterative solution for an inverse boundary value problem , 2005 .

[89]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[90]  Guanghui Hu,et al.  Shape Identification in Inverse Medium Scattering Problems with a Single Far-Field Pattern , 2015, SIAM J. Math. Anal..

[91]  A. Kirsch The domain derivative and two applications in inverse scattering theory , 1993 .