Stochastic Spatial Wind Field Simulation using a Potential Field

A new simulation environment is proposed, featuring the generation of unique spatial wind velocity fields using stochastic methods. This wind field simulation technique can be tuned to match realistic atmospheric conditions based on weather data measurements at a desired location. The proposed simulation environment also includes an aircraft dynamic model of a research unmanned aerial vehicle and corresponding sensor error modeling. The parameters of the aircraft model were determined from previous studies utilizing experimental flight data. The new simulator is used to validate the effectiveness of a nonlinear Kalman filtering based wind estimation algorithm.

[1]  Matthew Rhudy,et al.  On-Line Orientation Calibration of Inertial Measurement Unit Pairs using Unmanned Aerial Vehicle Flight Data , 2013 .

[2]  Bernard Etkin,et al.  Dynamics of Atmospheric Flight , 1972 .

[3]  Hugh F. Durrant-Whyte,et al.  Development of a nonlinear psi-angle model for large misalignment errors and its application in INS alignment and calibration , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Gene E. Likens,et al.  Trends in stream nitrogen concentrations for forested reference catchments across the USA , 2013 .

[5]  Jihoon Kim,et al.  Wind Estimation and Airspeed Calibration using a UAV with a Single-Antenna GPS Receiver and Pitot Tube , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[6]  C. Lefas Real-Time Wind Estimation and Tracking with Transponder Downlinked Airspeed and Heading Data , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[8]  Yuyu Zhou,et al.  Spatial and temporal patterns of global onshore wind speed distribution , 2013 .

[9]  Pijush Samui,et al.  Machine learning modelling for predicting soil liquefaction susceptibility , 2011 .

[10]  Kerri B. Phillips,et al.  Aircraft parameter identification for application within a fault-tolerant flight control system , 2009 .

[11]  Marcello R. Napolitano,et al.  Evaluation of Matrix Square Root Operations for UKF within a UAV GPS/INS Sensor Fusion Application , 2011 .

[12]  Zhiqiang Xing,et al.  Modeling and bounding low cost inertial sensor errors , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[13]  Marcello R. Napolitano,et al.  Sensitivity Analysis of Extended and Unscented Kalman Filters for Attitude Estimation , 2013, J. Aerosp. Inf. Syst..

[14]  T. Kármán Progress in the Statistical Theory of Turbulence , 1948 .

[15]  G. Campa,et al.  Comparison of Different Neural Augmentations for the Fault Tolerant Control Laws of the WVU YF-22 Model Aircraft , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[16]  Dan Bugajski,et al.  Dynamic inversion: an evolving methodology for flight control design , 1994 .

[17]  Eugene A. Morelli,et al.  Aircraft system identification : theory and practice , 2006 .

[18]  M. D. Paola,et al.  Digital simulation of wind field velocity , 1998 .

[19]  Makoto Kumon,et al.  Wind Estimation by Unmanned Air Vehicle with Delta Wing , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[20]  Keith Redmill,et al.  Sensor and data fusion design and evaluation with a virtual environment simulator , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[21]  Srikanth Gururajan,et al.  Autonomous Formation Flight: Hardware Development , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[22]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[23]  Jason N. Gross,et al.  Development of a GPS/INS Sensor Fusion Simulation Environment Using Flight Data , 2011 .

[24]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[25]  Matthew Rhudy,et al.  UAV Attitude, Heading, and Wind Estimation Using GPS/INS and an Air Data System , 2013 .

[26]  Marcello R. Napolitano,et al.  Design and Flight Testing Evaluation of Formation Control Laws , 2006, IEEE Transactions on Control Systems Technology.

[27]  J. Mann Wind field simulation , 1998 .

[28]  M. Rhudy,et al.  Online Stochastic Convergence Analysis of the Kalman Filter , 2013 .

[29]  Marcello R. Napolitano,et al.  Design and flight-testing of non-linear formation control laws , 2007 .

[30]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[31]  Marcello R. Napolitano,et al.  Advanced Research Integrated Avionics (ARIA) System for Fault-Tolerant Flight Research , 2009 .

[32]  Florence Sevault,et al.  Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration , 2011 .

[33]  Marcello R. Napolitano,et al.  On-line Modeling and Calibration of Low-Cost Navigation Sensors , 2011 .

[34]  John M. Cimbala,et al.  Fluid Mechanics: Fundamentals and Applications , 2004 .

[35]  Filippo Ubertini,et al.  Computer Simulation of Stochastic Wind Velocity Fields for Structural Response Analysis: Comparisons and Applications , 2010 .

[36]  J. Neidhoefer,et al.  Wind Field Estimation for Small Unmanned Aerial Vehicles , 2010 .