Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1

SUMMARY: Susceptibility-weighted imaging (SWI) is a new neuroimaging technique, which uses tissue magnetic susceptibility differences to generate a unique contrast, different from that of spin density, T1, T2, and T2*. In this review (the first of 2 parts), we present the technical background for SWI. We discuss the concept of gradient-echo images and how we can measure local changes in susceptibility. Armed with this material, we introduce the steps required to transform the original magnitude and phase images into SWI data. The use of SWI filtered phase as a means to visualize and potentially quantify iron in the brain is presented. Advice for the correct interpretation of SWI data is discussed, and a set of recommended sequence parameters for different field strengths is given.

[1]  James P. Larsen,et al.  Susceptibility-Weighted Magnetic Resonance Imaging in the Evaluation of Dementia , 2015, Radiology case reports.

[2]  Andre Obenaus,et al.  OBSERVING TUMOR VASCULARITY NONINVASIVELY USING MAGNETIC RESONANCE IMAGING , 2011 .

[3]  R. Grossman,et al.  Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging , 2009, Journal of magnetic resonance imaging : JMRI.

[4]  Yi Wang,et al.  Quantitative MR susceptibility mapping using piece‐wise constant regularized inversion of the magnetic field , 2008, Magnetic resonance in medicine.

[5]  Yang Xuan,et al.  MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge‐Weber Syndrome , 2008, Journal of magnetic resonance imaging : JMRI.

[6]  H. Fukuyama,et al.  A Developmental Venous Anomaly Presenting Atypical Findings on Susceptibility-Weighted Imaging , 2008, American Journal of Neuroradiology.

[7]  Zhaoyang Jin,et al.  Simultaneous acquisition of MR angiography and venography (MRAV) , 2008, Magnetic resonance in medicine.

[8]  Oliver Speck,et al.  The molecular basis for gray and white matter contrast in phase imaging , 2008, NeuroImage.

[9]  Yau-Yau Wai,et al.  Hemorrhage detection during focused-ultrasound induced blood-brain-barrier opening by using susceptibility-weighted magnetic resonance imaging. , 2008, Ultrasound in medicine & biology.

[10]  Hans-Joachim Mentzel,et al.  Investigations on the effect of caffeine on cerebral venous vessel contrast by using susceptibility-weighted imaging (SWI) at 1.5, 3 and 7 T , 2008, NeuroImage.

[11]  Daniel B. Vigneron,et al.  Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases , 2008, NeuroImage.

[12]  Chandrasekharan Kesavadas,et al.  Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review , 2008, Neuroradiology.

[13]  Max A. Viergever,et al.  MR venography of the human brain using susceptibility weighted imaging at very high field strength , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[14]  E. Gasparetto,et al.  Susceptibility-Weighted Imaging for the Evaluation of Patients with Familial Cerebral Cavernous Malformations: A Comparison with T2-Weighted Fast Spin-Echo and Gradient-Echo Sequences , 2008, American Journal of Neuroradiology.

[15]  E. Haacke,et al.  Susceptibility-Weighted MR Imaging: A Review of Clinical Applications in Children , 2008, American Journal of Neuroradiology.

[16]  D. Kido,et al.  Mineralization of the Deep Gray Matter with Age: A Retrospective Review with Susceptibility-Weighted MR Imaging , 2008, American Journal of Neuroradiology.

[17]  Jan Sedlacik,et al.  Obtaining blood oxygenation levels from MR signal behavior in the presence of single venous vessels , 2007, Magnetic resonance in medicine.

[18]  絢子 太田,et al.  MR用簡易ファントムを用いた磁化率強調画像(Susceptibility-weighted Imaging:SWI)の基礎的検討 , 2007 .

[19]  Toshinori Hirai,et al.  Detection of hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging clinical and phantom studies. , 2007, Academic radiology.

[20]  Carlo Ciulla,et al.  Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain , 2007, Journal of magnetic resonance imaging : JMRI.

[21]  S Trattnig,et al.  High-Resolution Contrast-Enhanced, Susceptibility-Weighted MR Imaging at 3T in Patients with Brain Tumors: Correlation with Positron-Emission Tomography and Histopathologic Findings , 2007, American Journal of Neuroradiology.

[22]  Jeff H. Duyn,et al.  High-field MRI of brain cortical substructure based on signal phase , 2007, Proceedings of the National Academy of Sciences.

[23]  P. Pal,et al.  Relaxation and susceptibility MRI characteristics in Hallervorden‐Spatz syndrome , 2007, Journal of magnetic resonance imaging : JMRI.

[24]  E Mark Haacke,et al.  In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. , 2007, Magnetic Resonance Imaging.

[25]  E M Haacke,et al.  Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. , 2007, AJNR. American journal of neuroradiology.

[26]  Stephen Ashwal,et al.  Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. , 2006, Archives of physical medicine and rehabilitation.

[27]  S. Terae,et al.  Capillary telangiectasia of the brain stem diagnosed by susceptibility-weighted imaging. , 2006, Journal of computer assisted tomography.

[28]  Jaladhar Neelavalli,et al.  Susceptibility‐weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses , 2006, Journal of magnetic resonance imaging : JMRI.

[29]  Felix W Wehrli,et al.  MR susceptometry for measuring global brain oxygen extraction , 2006, Magnetic resonance in medicine.

[30]  J. Reichenbach,et al.  Contrast-Enhanced, High-Resolution, Susceptibility-Weighted Magnetic Resonance Imaging of the Brain: Dose-Dependent Optimization At 3 Tesla and 1.5 Tesla In Healthy Volunteers , 2006, Investigative radiology.

[31]  Yingbiao Xu,et al.  The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. , 2006, Magnetic resonance imaging.

[32]  Jaladhar Neelavalli,et al.  Clinical applications of neuroimaging with susceptibility‐weighted imaging , 2005, Journal of magnetic resonance imaging : JMRI.

[33]  C. J. Wall,et al.  Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. , 2005, Pediatric neurology.

[34]  Markus Barth,et al.  Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[35]  J. Reichenbach,et al.  Magnetic susceptibility-weighted MR phase imaging of the human brain. , 2005, AJNR. American journal of neuroradiology.

[36]  O. Seror,et al.  L'imagerie de susceptibilité magnétique: Théorie et applications , 2004 .

[37]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[38]  E Mark Haacke,et al.  Reliability in detection of hemorrhage in acute stroke by a new three‐dimensional gradient recalled echo susceptibility‐weighted imaging technique compared to computed tomography: A retrospective study , 2004, Journal of magnetic resonance imaging : JMRI.

[39]  N. Nighoghossian,et al.  Contribution of Susceptibility-Weighted Imaging to Acute Stroke Assessment , 2004, Stroke.

[40]  C. J. Wall,et al.  Diffuse axonal injury in children: Clinical correlation with hemorrhagic lesions , 2004, Annals of neurology.

[41]  Petra Schmalbrock,et al.  Enhanced gray and white matter contrast of phase susceptibility‐weighted images in ultra‐high‐field magnetic resonance imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[42]  Rudolf Stollberger,et al.  Automated unwrapping of MR phase images applied to BOLD MR‐venography at 3 Tesla , 2003, Journal of magnetic resonance imaging : JMRI.

[43]  J Debus,et al.  Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. , 2003, Radiology.

[44]  E Mark Haacke,et al.  Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. , 2003, Radiology.

[45]  L R Schad,et al.  Improved target volume characterization in stereotactic treatment planning of brain lesions by using high‐resolution BOLD MR‐venography , 2001, NMR in biomedicine.

[46]  E M Haacke,et al.  Predicting BOLD signal changes as a function of blood volume fraction and resolution , 2001, NMR in biomedicine.

[47]  E. Haacke,et al.  High‐resolution BOLD venographic imaging: a window into brain function , 2001, NMR in biomedicine.

[48]  E. Haacke,et al.  An exact form for the magnetic field density of states for a dipole. , 2001, Magnetic resonance imaging.

[49]  J. R. Reichenbach,et al.  High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique , 2001, Neuroradiology.

[50]  D. Yablonskiy,et al.  Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T  *2 , and non‐Lorentzian signal behavior , 2001, Magnetic resonance in medicine.

[51]  L. Schad,et al.  Hochaufgelöste MR-Venographie zerebraler arteriovenöser Malformationen , 2001, Der Radiologe.

[52]  E M Haacke,et al.  Artery and vein separation using susceptibility‐dependent phase in contrast‐enhanced MRA , 2000, Journal of magnetic resonance imaging : JMRI.

[53]  J R Reichenbach,et al.  High-Resolution MR Venography at 3.0 Tesla , 2000, Journal of computer assisted tomography.

[54]  F Barkhof,et al.  MR venography of multiple sclerosis. , 2000, AJNR. American journal of neuroradiology.

[55]  J Debus,et al.  [High resolution MR-venography of cerebral arteriovenous malformations]. , 1999, Der Radiologe.

[56]  H. An,et al.  Improving high‐resolution MR bold venographic imaging using a T1 reducing contrast agent , 1999, Journal of magnetic resonance imaging : JMRI.

[57]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[58]  E. Haacke,et al.  Hemispheric Language Dominance in Children Demonstrated by Functional Magnetic Resonance Imaging , 1999, Journal of child neurology.

[59]  L R Schad,et al.  Comparison of functional MR-venography and EPI-BOLD fMRI at 1.5 T. , 1998, Magnetic resonance imaging.

[60]  Lothar R. Schad,et al.  High-resolution venography of the brain using magnetic resonance imaging , 1998, Magnetic Resonance Materials in Physics, Biology and Medicine.

[61]  T E Conturo,et al.  Contrast‐agent phase effects: An experimental system for analysis of susceptibility, concentration, and bolus input function kinetics , 1997, Magnetic resonance in medicine.

[62]  J R Reichenbach,et al.  Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. , 1997, Radiology.

[63]  J. Reichenbach,et al.  Theory and application of static field inhomogeneity effects in gradient‐echo imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[64]  J. Schenck The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. , 1996, Medical physics.

[65]  Weili Lin,et al.  In vivo validation of the bold mechanism: A review of signal changes in gradient echo functional MRI in the presence of flow , 1995, Int. J. Imaging Syst. Technol..

[66]  Ivan Saxl,et al.  Image analysis and stereology , 1994 .

[67]  R. Weisskoff,et al.  MRI susceptometry: Image‐based measurement of absolute susceptibility of MR contrast agents and human blood , 1992, Magnetic resonance in medicine.

[68]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[69]  C. Springer,et al.  Bulk magnetic susceptibility shifts in nmr studies of compartmentalized samples: use of paramagnetic reagents , 1990, Magnetic resonance in medicine.

[70]  S. Saini,et al.  Magnetism: a primer and review. , 1988, AJR. American journal of roentgenology.

[71]  A. Haase,et al.  FLASH imaging: rapid NMR imaging using low flip-angle pulses. 1986. , 1986, Journal of magnetic resonance.

[72]  D Matthaei,et al.  Rapid three-dimensional MR imaging using the FLASH technique. , 1986, Journal of computer assisted tomography.

[73]  G M Bydder,et al.  Initial Clinical Evaluation of a Whole Body Nuclear Magnetic Resonance (NMR) Tomograph , 1982, Journal of computer assisted tomography.

[74]  W. Edelstein,et al.  Spin warp NMR imaging and applications to human whole-body imaging. , 1980, Physics in medicine and biology.

[75]  B. Thomas,et al.  Susceptibility weighted imaging in holohemispheric venous angioma with cerebral hemiatrophy. , 2008, Neurology India.

[76]  M. Ohkubo,et al.  [Study of susceptibility-weighted imaging (SWI) using a simple MR phantom]. , 2007, Nihon Hoshasen Gijutsu Gakkai zasshi.

[77]  A. Heerschap,et al.  Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO). , 2006, Zeitschrift fur medizinische Physik.

[78]  E. Haacke,et al.  Imaging iron stores in the brain using magnetic resonance imaging. , 2005, Magnetic resonance imaging.

[79]  G. Bydder,et al.  NMR imaging of the brain , 2004, Neuroradiology.

[80]  E. Haacke,et al.  [Susceptibility weighted imaging. Theory and applications]. , 2004, Journal de radiologie.

[81]  W. Kaiser,et al.  Early diagnosis of cerebral involvement in Sturge-Weber syndrome using high-resolution BOLD MR venography , 2004, Pediatric Radiology.

[82]  J R Reichenbach,et al.  In vivo measurement of blood oxygen saturation using magnetic resonance imaging: A direct validation of the blood oxygen level‐dependent concept in functional brain imaging , 1997, Human brain mapping.

[83]  G. Bydder,et al.  NMR imaging of the brain using spin-echo sequences. , 1982, Clinical Radiology.