The industrial melanism mutation in British peppered moths is a transposable element

[1]  R. Whetten,et al.  Ecological genomics of local adaptation in Cornus florida L. by genotyping by sequencing , 2016, Ecology and evolution.

[2]  Grace C. Wu,et al.  A major gene controls mimicry and crypsis in butterflies and moths , 2016, Nature.

[3]  K. Yamamoto,et al.  Mapping and recombination analysis of two moth colour mutations, Black moth and Wild wing spot, in the silkworm Bombyx mori , 2015, Heredity.

[4]  D. Barford,et al.  Atomic structure of the APC/C and its mechanism of protein ubiquitination , 2015, Nature.

[5]  Jürgen Gadau,et al.  Transposable element islands facilitate adaptation to novel environments in an invasive species , 2014, Nature Communications.

[6]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[7]  David L. Stern,et al.  The genetic causes of convergent evolution , 2013, Nature Reviews Genetics.

[8]  R. Hawley,et al.  A Meiosis-Specific Form of the APC/C Promotes the Oocyte-to-Embryo Transition by Decreasing Levels of the Polo Kinase Inhibitor Matrimony , 2013, PLoS biology.

[9]  D. Barford,et al.  Insights into Degron Recognition by APC/C Coactivators from the Structure of an Acm1-Cdh1 Complex , 2013, Molecular cell.

[10]  V. Orgogozo,et al.  THE LOCI OF REPEATED EVOLUTION: A CATALOG OF GENETIC HOTSPOTS OF PHENOTYPIC VARIATION , 2013, Evolution; international journal of organic evolution.

[11]  L. Cook,et al.  The peppered moth and industrial melanism: evolution of a natural selection case study , 2012, Heredity.

[12]  M. Dalíková,et al.  Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism , 2012, Heredity.

[13]  Josefa González,et al.  The impact of transposable elements in environmental adaptation , 2013, Molecular ecology.

[14]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[15]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[16]  D. Falush,et al.  Inference of Population Structure using Dense Haplotype Data , 2012, PLoS genetics.

[17]  H. Hoekstra,et al.  Molecular spandrels: tests of adaptation at the genetic level , 2011, Nature Reviews Genetics.

[18]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[19]  M. Dalíková,et al.  Industrial Melanism in British Peppered Moths Has a Singular and Recent Mutational Origin , 2011, Science.

[20]  C. Jiggins,et al.  A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. , 2010, Trends in genetics : TIG.

[21]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[22]  Philipp W. Messer,et al.  Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila , 2010, PLoS genetics.

[23]  M. Muñoz-López,et al.  DNA Transposons: Nature and Applications in Genomics , 2010, Current genomics.

[24]  James Mallet,et al.  Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Heliconius melpomene Clade , 2010, PLoS genetics.

[25]  F. Rousset,et al.  Selection and gene flow on a diminishing cline of melanic peppered moths , 2008, Proceedings of the National Academy of Sciences.

[26]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[27]  L. Nagy,et al.  Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns , 2008, Proceedings of the Royal Society B: Biological Sciences.

[28]  J. Coyne,et al.  THE LOCUS OF EVOLUTION: EVO DEVO AND THE GENETICS OF ADAPTATION , 2007, Evolution; international journal of organic evolution.

[29]  A. Iida,et al.  Vertebrate DNA transposon as a natural mutator: the medaka fish Tol2 element contributes to genetic variation without recognizable traces. , 2006, Molecular biology and evolution.

[30]  S. L. Sutton,et al.  Melanic moth frequencies in Yorkshire, an old English industrial hot spot. , 2005, The Journal of heredity.

[31]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints , 2005, Nucleic Acids Res..

[32]  R. Nielsen,et al.  Linkage Disequilibrium as a Signature of Selective Sweeps , 2004, Genetics.

[33]  J. Brookfield Evolutionary Genetics: Mobile DNAs as Sources of Adaptive Change? , 2004, Current Biology.

[34]  D. Begun,et al.  Strong selective sweep associated with a transposon insertion in Drosophila simulans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  L. Cook The Rise and Fall of the Carbonaria Form of the Peppered Moth , 2003, The Quarterly Review of Biology.

[36]  A. Burt,et al.  Indices of multilocus linkage disequilibrium , 2001 .

[37]  Tehyen Chu,et al.  Cortex, a Drosophila gene required to complete oocyte meiosis, is a member of the Cdc20/fizzy protein family , 2001, Genesis.

[38]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[39]  E. R. Creed,et al.  The genetics of the Insularia forms of the peppered moth, Biston betularia , 1977, Heredity.