Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime

We report on a thin-disk Yb:YAG laser made from a Q-switched oscillator and a multipass amplifier delivering pulses of 48 mJ at 1030 nm. The peculiar requirements for this laser are the short delay time (< 500 ns) between electronic trigger and optical output pulse and the time randomness with which these triggers occur (with trigger to next trigger delay ges 1.5 ms). Details concerning the oscillator dynamics (-switching cycle, intensity stabilization), and the peculiar amplifier layout are given. Simulations of the beam propagation in the amplifier based on the Collins integral and the measured aspherical components of the disk reproduce well the measured beam intensity profiles (with higher order intensity moments) and gains. Measurements of the thermal lens and ASE effects of the disk are also presented. A novel method to deduce the effective Yb:YAG upper state lifetime (under real laser operation and including ASE effects) is presented. That knowledge is necessary to determine gain and stored energy in the active medium and to understand the limiting factors for energy scaling of thin-disk lasers.

[1]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[2]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[3]  T. Hänsch,et al.  The Muonic Hydrogen Lamb Shift Experiment at PSI , 2001 .

[4]  Peizhi Yang,et al.  Concentration quenching in Yb:YAG , 2002 .

[5]  M. Karszewski,et al.  Theoretical modelling and experimental investigation of thediode-pumped thin-disk Yb:YAG laser (Erratum) [Quantum Electronics 29 (8) 697 — 703 (1999)] , 1999 .

[6]  M. Karszewski,et al.  Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser , 1999 .

[7]  E. Bigot,et al.  Status of the muonic hydrogen Lamb-shift experiment , 2007 .

[8]  Theodor W. Hänsch,et al.  The muonic hydrogen Lamb-shift experiment , 2005 .

[9]  A. Friberg,et al.  Matrix representation of Gaussian Schell-model beams in optical systems☆ , 1986 .

[10]  Dmitrii Kouznetsov,et al.  Role of undoped cap in the scaling of thin-disk lasers , 2008 .

[11]  William F. Krupke,et al.  1.047-/spl mu/m Yb:Sr/sub 5/(PO/sub 4/)/sub 3/F energy storage optical amplifier , 1995 .

[12]  T. Hänsch,et al.  Powerful fast triggerable 6 μm laser for the muonic hydrogen 2S-Lamb shift experiment , 2005 .

[13]  Randolf Pohl,et al.  Observation of long-lived muonic hydrogen in the 2S state. , 2006, Physical review letters.

[14]  J A Arnaud Degenerate Optical Cavities. II: Effect of Misalignments. , 1969, Applied optics.

[15]  E. Sudarshan,et al.  Partially coherent beams and a generalized ABCD-law , 1988 .

[16]  A. Giesen,et al.  A 1-kW CW thin disc laser , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  R L Byer,et al.  Yb:YAG master oscillator power amplifier for remote wind sensing. , 2007, Applied optics.

[18]  T. Fan,et al.  Thermal coefficients of the expansion and refractive index in YAG. , 1999, Applied optics.

[19]  V. Magni,et al.  Multielement stable resonators containing a variable lens , 1987 .

[20]  T. Fan,et al.  Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. , 1994, Optics letters.

[21]  Stephen A. Payne,et al.  Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .

[22]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[23]  David S. Sumida,et al.  Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers , 1997 .

[24]  O. Antipov,et al.  Mechanisms of a change in the refractive index of an intensely pumped Yb:YAG crystal , 2006 .