Sparse polynomial interpolation and Berlekamp/Massey algorithms that correct outlier errors in input values

We propose algorithms performing sparse interpolation with errors, based on Prony's--Ben-Or's & Tiwari's algorithm, using a Berlekamp/Massey algorithm with early termination. First, we present an algorithm that can recover a <i>t</i>-sparse polynomial <i>f</i> from a sequence of values, where some of the values are wrong, spoiled by either random or misleading errors. Our algorithm requires bounds <i>T</i> ≥ <i>t</i> and <i>E</i> ≥ <i>e</i>, where <i>e</i> is the number of evaluation errors. It interpolates <i>f</i>(ω<sup><i>i</i></sup>) for <i>i</i> = 1,..., 2<i>T</i>(<i>E</i> + 1), where ω is a field element at which each non-zero term evaluates distinctly. We also investigate the problem of recovering the minimal linear generator from a sequence of field elements that are linearly generated, but where again <i>e</i> ≤ <i>E</i> elements are erroneous. We show that there exist sequences of < 2<i>t</i>(2<i>e</i> + 1) elements, such that two distinct generators of length <i>t</i> satisfy the linear recurrence up to <i>e</i> faults, at least if the field has characteristic ≠ 2. Uniqueness can be proven (for any field characteristic) for length ≥ 2<i>t</i>(2<i>e</i> + 1) of the sequence with <i>e</i> errors. Finally, we present the Majority Rule Berlekamp/Massey algorithm, which can recover the unique minimal linear generator of degree <i>t</i> when given bounds <i>T</i> ≥ <i>t</i> and <i>E</i> ≥ <i>e</i> and the initial sequence segment of 2<i>T</i>(2<i>E</i> + 1) elements. Our algorithm also corrects the sequence segment. The Majority Rule algorithm yields a unique sparse interpolant for the first problem. The algorithms are applied to sparse interpolation algorithms with numeric noise, into which we now can bring outlier errors in the values.

[1]  Clément Pernet,et al.  Output-sensitive decoding for redundant residue systems , 2010, ISSAC.

[2]  George Labahn,et al.  Symbolic-numeric sparse interpolation of multivariate polynomials , 2006, ISSAC '06.

[3]  Erich Kaltofen,et al.  On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms , 2007, SNC '07.

[4]  Erich Kaltofen,et al.  Fifteen years after DSC and WLSS2 what parallel computations I do today: invited lecture at PASCO 2010 , 2010, PASCO.

[5]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[6]  Marek Karpinski,et al.  The matching problem for bipartite graphs with polynomially bounded permanents is in NC , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[7]  Éric Schost,et al.  Interpolation of polynomials given by straight-line programs , 2009, Theor. Comput. Sci..

[8]  Erich Kaltofen,et al.  Fast estimates of Hankel matrix condition numbers and numeric sparse interpolation , 2012, SNC '11.

[9]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[10]  Erich Kaltofen,et al.  Modular rational sparse multivariate polynomial interpolation , 1990, ISSAC '90.

[11]  Erich Kaltofen,et al.  Supersparse black box rational function interpolation , 2011, ISSAC '11.

[12]  Erich Kaltofen,et al.  Algorithms for computing sparsest shifts of polynomials in power, Chebyshev, and Pochhammer bases , 2003, J. Symb. Comput..

[13]  Mark Giesbrecht,et al.  Interpolation of Shifted-Lacunary Polynomials , 2008, computational complexity.

[14]  Richard E. Blahut Transform Techniques for Error Control Codes , 1979, IBM J. Res. Dev..

[15]  Erich Kaltofen,et al.  Berlekamp/massey algorithms for linearly generated matrix sequences , 2009 .

[16]  Mark Giesbrecht,et al.  Diversification improves interpolation , 2011, ISSAC '11.

[17]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[18]  Shubhangi Saraf,et al.  Noisy Interpolation of Sparse Polynomials, and Applications , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[19]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[20]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[21]  James L. Massey,et al.  Linear Complexity in Coding Theory , 1986, Coding Theory and Applications.

[22]  Wataru Yoshida,et al.  A simple derivation of the Berlekamp- Massey algorithm and some applications , 1987, IEEE Trans. Inf. Theory.

[23]  Marek Karpinski,et al.  A Zero-Test and an Interpolation Algorithm for the Shifted Sparse Polynominals , 1993, AAECC.

[24]  Erich Kaltofen,et al.  On the matrix berlekamp-massey algorithm , 2013, TALG.

[25]  Erich Kaltofen,et al.  Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..

[26]  Siegfried M. Rump,et al.  Structured Perturbations Part I: Normwise Distances , 2003, SIAM J. Matrix Anal. Appl..