Dynamics on rugged landscapes of energy and ultrametric diffusion

We discuss the interbasin kinetics approximation for random walk on a complex (rugged) landscape of energy. In this approximation the random walk is described by the system of kinetic equations corresponding to transitions between the local minima of energy. If we approximate the transition rates between the local minima by the Arrhenius formula then the system of kinetic equations will be hierarchical. We discuss for a generic landscape of energy the anzats of interbasin kinetics which is equivalent to the ultrametric diffusion generated by an ultrametric pseudodifferential operator.

[1]  Britton Chance,et al.  Problems of Biological Physics , 1981 .

[2]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[3]  F. Stillinger,et al.  Packing Structures and Transitions in Liquids and Solids , 1984, Science.

[4]  Ogielski,et al.  Dynamics on ultrametric spaces. , 1985, Physical review letters.

[5]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[6]  Sibani,et al.  Diffusion in hierarchies. , 1988, Physical review. A, General physics.

[7]  Stillinger Relaxation behavior in atomic and molecular glasses. , 1990, Physical review. B, Condensed matter.

[8]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[9]  P. Freund,et al.  p-adic numbers in physics , 1993 .

[10]  V. S. Vladimirov,et al.  P-adic analysis and mathematical physics , 1994 .

[11]  J. Onuchic,et al.  Navigating the folding routes , 1995, Science.

[12]  Hierarchical diffusion, aging and multifractality , 1996, cond-mat/9604033.

[13]  M. Karplus,et al.  The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics , 1997 .

[14]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[15]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[16]  G. Parisi,et al.  P-adic numbers and replica symmetry breaking , 1999, cond-mat/9906095.

[17]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[18]  V. Avetisov,et al.  p-Adic description of characteristic relaxation in complex systems , 2002, cond-mat/0210447.

[19]  H Frauenfelder,et al.  Myoglobin: The hydrogen atom of biology and a paradigm of complexity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Khrennikov,et al.  Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2004 .

[21]  A. Khrennikov,et al.  Wavelets on ultrametric spaces , 2005 .

[22]  Localization in space for a free particle in ultrametric quantum mechanics , 2006 .

[23]  S. V. Kozyrev,et al.  On p-adic mathematical physics , 2006, 0904.4205.

[24]  Сергей Владимирович Козырев,et al.  Всплески и спектральный анализ ультраметрических псевдодифференциальных операторов@@@Wavelets and spectral analysis of ultrametric pseudodifferential operators , 2007 .

[25]  V. Avetisov,et al.  PROTEIN ULTRAMETRICITY AND SPECTRAL DIFFUSION IN DEEPLY FROZEN PROTEINS , 2008 .

[26]  J. Bouchaud,et al.  Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces , 2007, 0711.4006.

[27]  S. V. Kozyrev Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure , 2008 .

[28]  First passage time distribution and the number of returns for ultrametric random walks , 2008, 0808.3066.

[29]  Random hierarchical matrices: spectral properties and relation to polymers on disordered trees , 2008, 0805.3543.

[30]  S. Nechaev,et al.  Some physical applications of random hierarchical matrices , 2009 .

[31]  S. Nechaev,et al.  On scale-free and poly-scale behaviors of random hierarchical networks , 2008, 0811.4518.