Mathematical modeling of vehicle frontal crash by a double spring-mass-damper model

This paper presents development of a mathematical model to represent the real vehicle frontal crash scenario. The vehicle is modeled by a double spring-mass-damper system. The front mass m1 represents the chassi of the vehicle and rear mass m2 represents the passenger compartment. The physical parameters of the model (Stiffness and dampers) are estimated using Nonlinear least square method (Levenberg-Marquart algorithm) by curve fitting the response of a double spring-mass-damper system to the experimental displacement data from the real vehicle crash. The model is validated by comparing the results from the model with the experimental results from real crash tests available.

[1]  Khanh Pham,et al.  Modeling MR-dampers: a nonlinear blackbox approach , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[2]  Norman Jones,et al.  Vehicle Crash Mechanics , 2002 .

[3]  Eric Udd,et al.  General Realization Algorithm for Modal Identification of Linear Dynamic Systems , 2008 .

[4]  Javad Marzbanrad,et al.  Calculation of vehicle-lumped model parameters considering occupant deceleration in frontal crash , 2011 .

[5]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[6]  Francesc Pozo,et al.  Parameter identification of large-scale magnetorheological dampers in a benchmark building platform , 2009, 2009 European Control Conference (ECC).

[7]  Hamid Reza Karimi,et al.  Mathematical modeling and parameters estimation of a car crash using data-based regressive model approach , 2011 .

[8]  Hamid Reza Karimi,et al.  Development of lumped-parameter mathematical models for a vehicle localized impact , 2011 .

[9]  Javad Marzbanrad,et al.  A System Identification Algorithm for Vehicle Lumped Parameter Model in Crash Analysis , 2011 .

[10]  Ahmet S. Yigit,et al.  Dynamic Analysis and Control of Automotive Occupant Restraint Systems , 2011 .

[11]  D.S. Bernstein,et al.  Subspace-based identification for linear and nonlinear systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[12]  J. Juang Applied system identification , 1994 .

[13]  Hosam K. Fathy,et al.  Sprung mass estimation for off-road vehicles via base-excitation suspension dynamics and recursive least squares , 2009, 2009 American Control Conference.

[14]  Domenico Guida,et al.  Parameter Identification of a Two Degrees of Freedom Mechanical System , 2009 .

[15]  Bart De Moor,et al.  Combined Deterministic-Stochastic Identification , 1996 .

[16]  J. Poshtan,et al.  SUBSPACE SYSTEM IDENTIFICATION , 2005 .

[17]  Peter Eberhard,et al.  Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure , 2011 .

[18]  Paulo Veríssimo,et al.  Development of generic multibody road vehicle models for crashworthiness , 2008 .

[19]  Javad Marzbanrad,et al.  Paremaeter Determination of a Vehicle 5-DOF Model to Simulate Occupant Deceleration in a Frontal Crash , 2011 .

[20]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[21]  Hamid Reza Karimi,et al.  Mathematical modeling of a vehicle crash test based on elasto-plastic unloading scenarios of spring-mass models , 2011 .

[22]  Kjell G. Robbersmyr,et al.  Application of viscoelastic hybrid models to vehicle crash simulation , 2011 .