Model Fidelity Studies for Rapid Trajectory Optimization

[1]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[2]  Eric N. Johnson,et al.  On-Line Trajectory Optimization for Autonomous Air Vehicles , 2003 .

[3]  Tarek Elhabian,et al.  Rapid Trajectory Optimization Using Computational Intelligence for Guidance and Conceptual Design of Multistage Space Launch Vehicles , 2005 .

[4]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[5]  R. Braun,et al.  Rapid Simultaneous Hypersonic Aerodynamic and Trajectory Optimization Using Variational Methods , 2011 .

[6]  Charles McClinton,et al.  X-43 - Scramjet Power Breaks the Hypersonic Barrier: Dryden Lectureship in Research for 2006 , 2006 .

[7]  Dimitri N. Mavris,et al.  Aerodynamic Surrogate Modeling of Variable Geometry , 2012 .

[8]  Tao Chao,et al.  Rapid Three-Dimensional Constrained Trajectory Generation for Near Space Hypersonic Vehicles , 2012 .

[9]  Paresh Parikh,et al.  Verification of a CFD Procedure for Aerodynamic Database Development Using the Hyper-X Stack Configuration , 2004 .

[10]  Walter C. Engelund,et al.  Aerodynamic database development for the Hyper-X airframe integrated scramjet propulsion experiments , 2000 .

[11]  Dimitri N. Mavris,et al.  INVENT Surrogate Modeling and Optimization of Transient Thermal Responses , 2012 .

[12]  Dimitri N. Mavris,et al.  A Method for Launch Vehicle Performance Analysis via Surrogate Modeling , 2016 .

[13]  Anil V. Rao,et al.  Constrained Trajectory Optimization Using Pseudospectral Methods , 2008 .

[14]  Mohamed S. Ebeida,et al.  Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual , 2020 .

[15]  Anil V. Rao,et al.  EXTENSION OF A PSEUDOSPECTRAL LEGENDRE METHOD TO NON-SEQUENTIAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS , 2003 .

[16]  Paul V. Tartabini,et al.  Hyper-X Post-Flight Trajectory Reconstruction , 2004 .

[17]  Dimitri N. Mavris,et al.  Adaptive Sampling to Improve Aerodynamic Predictions for Reusable Rocket-Powered Vehicles , 2013 .

[18]  I. Michael Ross,et al.  Towards Real-Time Computation of Optimal Controls for Nonlinear Systems , 2002 .

[19]  Timothy R. Jorris,et al.  Advances in Highly Constrained Multi-Phase Trajectory Generation using the General Pseudospectral Optimization Software (GPOPS) , 2013, AIAA Guidance, Navigation, and Control (GNC) Conference.

[20]  Qi Gong,et al.  Guess-Free Trajectory Optimization , 2008 .

[21]  Evangelos A. Theodorou,et al.  A Comparison between Trajectory Optimization Methods: Differential Dynamic Programming and Pseudospectral Optimal Control , 2016 .