Electrospray evaporation and deposition

Electrospray transport, evaporation and deposition on a heated substrate is investigated theoretically by Lagrangian tracking of single droplets. The droplet mass and heat transfer are calculated under forced convection and compared to limited cases of electrospray transport only or droplet evaporation only. Segregation of primary and satellite electrospray droplets is observed also, in agreement with data in the literature. The arriving droplet diameter and spatial distribution at the substrate show that evaporation barely affects droplet transport. In contrast, droplet size and salt concentration can be affected significantly by evaporation. It is shown also how process parameters such as substrate temperature, initial droplet diameter and vapor transport may affect the film quality. Accounting for the Rayleigh limit of charged droplets, leads to acceleration of their evaporation when high substrate temperatures or small droplet diameters are employed.

[1]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[2]  W. E. Ranz,et al.  Evaporation from drops , 1952 .

[3]  W. Sirignano,et al.  Fluid Dynamics and Transport of Droplets and Sprays , 1999 .

[4]  Alfonso M. Gañán-Calvo,et al.  Current and droplet size in the electrospraying of liquids. Scaling laws , 1997 .

[5]  S. A. Mahmoud Influence of preparation parameters on physical properties of Bi2S3 films prepared by the spray pyrolysis method , 2001 .

[6]  R. Rasmussen,et al.  A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air , 1971 .

[7]  T. Aihara,et al.  Free convection along the downward-facing surface of a heated horizontal plate , 1972 .

[8]  N. Frossling,et al.  Uber die Verdunstung fallender Tropfen , 1938 .

[9]  W. Sirignano Fuel droplet vaporization and spray combustion theory , 1983 .

[10]  Elisabeth Djurado,et al.  Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition , 2001 .

[11]  M. Cloupeau,et al.  Electrostatic spraying of liquids in cone-jet mode , 1989 .

[12]  S. Vassilev,et al.  Preparation of ceria films by spray pyrolysis method , 2000 .

[13]  A. Kip,et al.  Pulses in Negative Point-to-Plane Corona , 1941 .

[14]  Patrick F. Dunn,et al.  Droplet motion in an electrohydrodynamic fine spray , 2023, Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems.

[15]  C. H. Chen,et al.  ELECTROSTATIC SOL–SPRAY DEPOSITION OF NANOSTRUCTURED CERAMIC THIN FILMS , 1999 .

[16]  A. Gomez,et al.  On the structure of an electrostatic spray of monodisperse droplets , 1994 .

[17]  M. Cloupeau,et al.  ELECTROHYDRODYNAMIC SPRAYING FUNCTIONING MODES - A CRITICAL-REVIEW , 1994 .

[18]  李幼升,et al.  Ph , 1989 .

[19]  J. Marijnissen,et al.  The production of thin films of LiMn2O4 by electrospraying , 1994 .

[20]  D. J. Brunner,et al.  ELECTROHYDRODYNAMIC ATOMIZATION IN THE CONE–JET MODE PHYSICAL MODELING OF THE LIQUID CONE AND JET , 1997 .

[21]  E. Davis,et al.  The rayleigh limit of charge revisited: light scattering from exploding droplets , 1994 .

[22]  K. C. Thong,et al.  The production of charged monodisperse fuel droplets by electrical dispersion , 1971 .

[23]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[24]  W. Sirignano,et al.  Droplet vaporization model for spray combustion calculations , 1989 .

[25]  W. Siefert Corona spray pyrolysis: A new coating technique with an extremely enhanced deposition efficiency , 1984 .

[26]  J. Lasheras,et al.  THE ELECTROSTATIC SPRAY EMITTED FROM AN ELECTRIFIED CONICAL MENISCUS , 1994 .