Mach–Zehnder interferometer-based all-optical reversible logic gate

Abstract In recent years, reversible logic has emerged as a promising computing paradigm having application in low-power CMOS, quantum computing, nanotechnology and optical computing. Optical logic gates have the potential to work at macroscopic (light pulses carry information), or quantum (single photons carry information) levels with great efficiency. However, relatively little has been published on designing reversible logic circuits in all-optical domain. In this paper, we propose and design a novel scheme of Toffoli and Feynman gates in all-optical domain. We have described their principle of operations and used a theoretical model to assist this task, finally confirming through numerical simulations. Semiconductor optical amplifier (SOA)-based Mach–Zehnder interferometer (MZI) can play a significant role in this field of ultra-fast all-optical signal processing. The all-optical reversible circuits presented in this paper will be useful to perform different arithmetic (full adder, BCD adder) and logical (realization of Boolean function) operations in the domain of reversible logic-based information processing.

[1]  H. John Caulfield,et al.  The logic of optics and the optics of logic , 2004, Inf. Sci..

[2]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[3]  H. Thapliyal,et al.  A beginning in the reversible logic synthesis of sequential circuits , 2005 .

[4]  Javier Martí,et al.  All-optical correlation employing single logic XOR gate with feedback , 2006 .

[5]  A. Lohmann Polarization and optical logic. , 1986, Applied optics.

[6]  Tanay Chattopadhyay,et al.  Polarization-encoded all-optical quaternary multiplexer and demultiplexer - A proposal , 2009 .

[7]  J. Jaques,et al.  Study of all-optical XOR using Mach-Zehnder Interferometer and differential scheme , 2004, IEEE Journal of Quantum Electronics.

[8]  E. Gini,et al.  Ultrafast switching dynamics of Mach-Zehnder interferometer switches , 2001, IEEE Photonics Technology Letters.

[9]  Li Li,et al.  All-optical switch and limiter based on nonlinear polarization in Mach–Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator , 2006 .

[10]  Juerg Leuthold,et al.  All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme , 1999 .

[11]  Lech Józwiak,et al.  Regular realization of symmetric functions using reversible logic , 2001, Proceedings Euromicro Symposium on Digital Systems Design.

[12]  Niloy K. Dutta,et al.  80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme , 2006 .

[13]  Jin Yi,et al.  Ternary Optical Computer Architecture , 2005 .

[14]  Jitendra Nath Roy,et al.  All-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer-based tree architecture. , 2008, Applied optics.

[15]  Keivan Navi,et al.  A Novel Reversible BCD Adder For Nanotechnology Based Systems , 2008 .

[16]  Y. Ueno,et al.  Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator , 2001, IEEE Photonics Technology Letters.

[17]  Juerg Leuthold,et al.  All-optical space switches with gain and principally ideal extinction ratios , 1998 .

[18]  Paolo Zuliani Logical reversibility , 2001, IBM J. Res. Dev..

[19]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[20]  Javier Martí,et al.  Numerical analysis of the performance of Mach-Zehnder interferometric logic gates enhanced with coupled nonlinear ring- resonators. , 2007, Optics express.

[21]  Jitendra Nath Roy Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations , 2009 .

[22]  W. Pieper,et al.  SLALOM: semiconductor laser amplifier in a loop mirror , 1995 .

[23]  Pavel Ginzburg,et al.  Photonic logic by linear unidirectional interference. , 2009, Optics express.

[24]  Ahsan Raja Chowdhury,et al.  Design of a compact reversible binary coded decimal adder circuit , 2006, J. Syst. Archit..

[25]  Tanay Chattopadhyay,et al.  Polarization encoded all-optical quaternary R–S flip-flop using binary latch , 2009 .

[26]  Sang‐Kook Han,et al.  All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment , 2006, Journal of Lightwave Technology.

[27]  Parag K. Lala,et al.  Reversible-logic design with online testability , 2006, IEEE Transactions on Instrumentation and Measurement.

[28]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[29]  Mohammad A. Karim,et al.  Optical Computing: An Introduction , 1992 .

[30]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[31]  Majid Haghparast,et al.  Design and Optimization of Reversible BCD Adder/Subtractor Circuit for Quantum and Nanotechnology Based Systems , 2008 .

[32]  J Shamir,et al.  Optical computing and the Fredkin gates. , 1986, Applied optics.

[33]  Guifang Li,et al.  Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier , 2006, IEEE Photonics Technology Letters.

[34]  Min Zhang,et al.  All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer , 2006 .

[35]  Qi Jie Wang,et al.  All-optical logic XOR using differential scheme and Mach-Zehnder interferometer , 2002 .

[36]  Y. A. Zaghloul,et al.  Complete all-optical processing polarization-based binary logic gates and optical processors. , 2006, Optics express.

[37]  Jian Wang,et al.  Design and analysis of all-optical XOR gate using SOA-based Mach–Zehnder interferometer , 2003 .

[38]  K. Blow,et al.  Demonstration of an all-optical Fredkin gate , 2000 .

[39]  Kyusik Chung,et al.  Evolutionary Approach to Quantum and Reversible Circuits Synthesis , 2003, Artificial Intelligence Review.

[40]  Mitchell A. Thornton,et al.  Efficient adder circuits based on a conservative reversible logic gate , 2002, Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002.

[41]  Min Zhang,et al.  Simulation of an all-optical xor gate with a semiconductor optical amplifierMach-Zehnder interferometer sped up by a continuous-wave assistant light , 2005 .

[42]  T Yatagai Optical space-variant logic-gate array based on spatial encoding technique. , 1986, Optics letters.

[43]  Gerhard W. Dueck,et al.  Improved quantum cost for n-bit Toffoli gates , 2003 .