LLM-105 nanoparticles prepared via green ball milling and their thermodynamics and kinetics investigation

[1]  Lining Sun,et al.  Rhodamine Derivative Functionalized Magnetic Nanoplatform for Cu2+ Sensing and Removal , 2018, Journal of Nanomaterials.

[2]  Sanjay Kumar,et al.  Thermodynamics and kinetics of hydrogen absorption–desorption of highly crystalline LaNi5 , 2018, Journal of Thermal Analysis and Calorimetry.

[3]  Yuruo Zhang,et al.  Nano-HNS Particles: Mechanochemical Preparation and Properties Investigation , 2018 .

[4]  Changkun Song,et al.  One-Step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity , 2018, Nanoscale Research Letters.

[5]  L. Ding,et al.  Facile Fabrication of Nanoparticles Stacked 2,6‐diamino‐3,5‐dinitropyrazine‐1‐oxide (LLM‐105) Sub‐microspheres via Electrospray Deposition , 2018 .

[6]  Shaohua Jin,et al.  Thermal decomposition and safety assessment of 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) by DTA and ARC , 2018, Journal of Thermal Analysis and Calorimetry.

[7]  Shu-sen Chen,et al.  Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate based polymer bonded explosive. , 2017, Journal of hazardous materials.

[8]  Shu-sen Chen,et al.  Thermal behavior and decomposition kinetics of CL-20-based plastic-bonded explosives , 2017, Journal of Thermal Analysis and Calorimetry.

[9]  F. Zhao,et al.  Thermochemical properties of 2,6-diamino-3,5-dinitropyrazine-1-oxide in dimethyl sulfoxide and N-methyl pyrrolidone , 2017, Journal of Thermal Analysis and Calorimetry.

[10]  Jin-hua Peng,et al.  Compatibility study between 2,6-diamino-3,5-dinitropyrazine-1-oxide and some high explosives by thermal and nonthermal techniques , 2017, Journal of Thermal Analysis and Calorimetry.

[11]  F. Zhao,et al.  Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions , 2016 .

[12]  Xiaolan Song,et al.  Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. , 2016, Journal of hazardous materials.

[13]  N. E. Taylor,et al.  Characterisation of the impact response of energetic materials: observation of a low-level reaction in 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) , 2016 .

[14]  Chongwei An,et al.  Nano Cyclotetramethylene Tetranitramine Particles Prepared by a Green Recrystallization Process , 2014 .

[15]  Fude Nie,et al.  Preparation and Properties of Submicrometer‐Sized LLM‐105 via Spray‐Crystallization Method , 2014 .

[16]  M. Zarandi,et al.  A novel approach for preparation of CL-20 nanoparticles by microemulsion method , 2014 .

[17]  S. Bhattacharya,et al.  High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. , 2013, ACS applied materials & interfaces.

[18]  M. Fathollahi,et al.  Kinetic investigation on thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nanoparticles , 2013 .

[19]  Changwen Hu,et al.  Fabrication of FOX-7 quasi-three-dimensional grids of one-dimensional nanostructures via a spray freeze-drying technique and size-dependence of thermal properties. , 2010, Journal of hazardous materials.

[20]  P. B. Wagh,et al.  Nanocrystalline trinitrotoluene (TNT) using sol-gel process , 2010 .

[21]  S. S. Hajimirsadeghi,et al.  Effect of particle size on thermal decomposition of nitrocellulose. , 2009, Journal of hazardous materials.

[22]  Peiyong Wang,et al.  Prefilming twin-fluid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization. , 2009, Journal of hazardous materials.

[23]  M. Rahimi‐Nasrabadi,et al.  Effect of nitrate content on thermal decomposition of nitrocellulose. , 2009, Journal of hazardous materials.

[24]  Guangcheng Yang,et al.  Preparation and Characterization of Nano‐TATB Explosive , 2006 .

[25]  A. Burnham,et al.  Exploring the physical, chemical and thermal characteristics of a new potentially insensitive high explosive RX-55-AE-5 , 2006 .

[26]  P. A. Urtiew,et al.  Sensitivity of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide , 2005 .

[27]  A K Sikder,et al.  A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. , 2004, Journal of hazardous materials.

[28]  Marco J. Starink,et al.  The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods , 2003 .

[29]  Jiagang Wu Preparation and Characterization , 2018 .