Online/off-line ring signature scheme with provable security

The article proposes an Online/Off-line Ring Signature Scheme in random oracle model. Security of the scheme relies on both Computational Diffie-Hellman and k-CAA problems. In Online/Off-line signature scheme. The proposed scheme is secure against Existential Unforgeability. It has Signer Ambiguity and robustness property where the misbehavior of the signer can be detected.

[1]  Germán Sáez,et al.  Ring Signature Schemes for General Ad-Hoc Access Structures , 2004, ESAS.

[2]  Dan Boneh,et al.  Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups , 2008, Journal of Cryptology.

[3]  Masayuki Abe,et al.  1-out-of-n Signatures from a Variety of Keys , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[4]  E. T. Bell Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , 1939 .

[5]  Giovanni Di Crescenzo,et al.  On monotone formula closure of SZK , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[6]  Jayaprakash Kar,et al.  Provably Secure Online/Off-line Identity-Based Signature Scheme for Wireless Sensor Network , 2014, Int. J. Netw. Secur..

[7]  Ivan Damgård,et al.  Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols , 1994, CRYPTO.

[8]  Tzong-Chen Wu,et al.  An identity-based ring signature scheme from bilinear pairings , 2004, 18th International Conference on Advanced Information Networking and Applications, 2004. AINA 2004..

[9]  Hidenori Kuwakado,et al.  Threshold ring signature scheme based on the curve , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[10]  Jacques Stern,et al.  Threshold Ring Signatures and Applications to Ad-hoc Groups , 2002, CRYPTO.

[11]  Hovav Shacham,et al.  Aggregate and Verifiably Encrypted Signatures from Bilinear Maps , 2003, EUROCRYPT.

[12]  Siu-Ming Yiu,et al.  Efficient Identity Based Ring Signature , 2005, ACNS.

[13]  Hovav Shacham,et al.  Efficient Ring Signatures Without Random Oracles , 2007, Public Key Cryptography.

[14]  Tsz Hon Yuen,et al.  Constant-Size ID-Based Linkable and Revocable-iff-Linked Ring Signature , 2006, INDOCRYPT.

[15]  Marc Joye,et al.  An Efficient On-Line/Off-Line Signature Scheme without Random Oracles , 2008, CANS.

[16]  Reihaneh Safavi-Naini,et al.  An Efficient Signature Scheme from Bilinear Pairings and Its Applications , 2004, Public Key Cryptography.

[17]  Germán Sáez,et al.  New Identity-Based Ring Signature Schemes , 2004, ICICS.

[18]  Amit K. Awasthi,et al.  ID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings , 2005, Int. J. Netw. Secur..

[19]  Jayaprakash Kar A Novel Construction of Aggregate Signcryption Scheme for Smart Card , 2013, CyberC 2013.

[20]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[21]  Joseph K. Liu,et al.  Enhanced Security Models and a Generic Construction Approach for Linkable Ring Signature , 2006, Int. J. Found. Comput. Sci..

[22]  Germán Sáez,et al.  Distributed Ring Signatures for Identity-Based Scenarios , 2004, IACR Cryptology ePrint Archive.

[23]  Kwangjo Kim,et al.  ID-Based Blind Signature and Ring Signature from Pairings , 2002, ASIACRYPT.

[24]  Markus Jakobsson,et al.  Designated Verifier Proofs and Their Applications , 1996, EUROCRYPT.