Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm(-1) and implications for interpretation of outer planet spectra
暂无分享,去创建一个
John J. Remedios | S. B. Calcutt | Lawrence A. Sromovsky | J. Remedios | S. Calcutt | P. Irwin | L. Sromovsky | N. Teanby | N. Bowles | Pgj Irwin | Neil E. Bowles | Nicholas A. Teanby | E. K. Strong | K. Sihra | K. Sihra | J. J. Remedios
[1] L. Sromovsky,et al. Near-IR methane absorption in outer planet atmospheres: Improved models of temperature dependence and implications for Uranus cloud structure , 2006 .
[2] L. Brown,et al. Empirical line parameters of methane from 1.1 to 2.1 μm , 2005 .
[3] Gang Li,et al. The HITRAN 2008 molecular spectroscopic database , 2005 .
[4] Franz Schreier,et al. The 2003 edition of the GEISA/IASI spectroscopic database , 2005 .
[5] S. Calcutt,et al. Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm−1 and implications for vertical cloud structure , 2005 .
[6] D. Chris Benner,et al. Methane Line Parameters in HITRAN , 2003 .
[7] Clive D Rodgers,et al. Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .
[8] S. Calcutt,et al. Calculated k distribution coefficients for hydrogen‐ and self‐broadened methane in the range 2000–9500 cm−1 from exponential sum fitting to band‐modelled spectra , 1996 .
[9] A. Borysow,et al. Modeling of Collision-Induced Infrared Absorption Spectra of H2 Pairs in the First Overtone Band at Temperatures from 20 to 500 K , 1995 .
[10] K. Strong,et al. Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm-1 for remote sounding of the atmosphere of jupiter , 1993 .
[11] R. West,et al. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients , 1993 .
[12] A. Pine. Self‐, N2, O2, H2, Ar, and He broadening in the ν3 band Q branch of CH4 , 1992 .
[13] A. Borysow,et al. New model of collision-induced infrared absorption spectra of H2He pairs in the 2–2.5 μm range at temperatures from 20 to 300 K: An update , 1992 .
[14] E. K. Srong. Spectral parameters of methane for remote sounding of the Jovian atmosphere , 1992 .
[15] A. Borysow. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K , 1991 .
[16] U. Fink,et al. Gaussian quadrature exponential sum modeling of near infrared methane laboratory spectra obtained at temperatures from 106 to 297 K , 1990 .
[17] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[18] A. Mckellar. The spectrum of gaseous methane at 77 K in the 1.1 – 2.6 μm region: a benchmark for planetary astronomy , 1989 .
[19] U. Fink,et al. The infrared spectra of Uranus, Neptune, and Titan from 0.8 to 2.5 microns , 1979 .
[20] C. Rodgers,et al. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .
[21] K. Fox. On the rotational partition function for tetrahedral molecules , 1970 .
[22] T. Elder,et al. Relative Optical Collision Diameters from the Pressure Broadening of Individual Infrared Absorption Lines , 1953 .