Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm(-1) and implications for interpretation of outer planet spectra

[1]  L. Sromovsky,et al.  Near-IR methane absorption in outer planet atmospheres: Improved models of temperature dependence and implications for Uranus cloud structure , 2006 .

[2]  L. Brown,et al.  Empirical line parameters of methane from 1.1 to 2.1 μm , 2005 .

[3]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[4]  Franz Schreier,et al.  The 2003 edition of the GEISA/IASI spectroscopic database , 2005 .

[5]  S. Calcutt,et al.  Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm−1 and implications for vertical cloud structure , 2005 .

[6]  D. Chris Benner,et al.  Methane Line Parameters in HITRAN , 2003 .

[7]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[8]  S. Calcutt,et al.  Calculated k distribution coefficients for hydrogen‐ and self‐broadened methane in the range 2000–9500 cm−1 from exponential sum fitting to band‐modelled spectra , 1996 .

[9]  A. Borysow,et al.  Modeling of Collision-Induced Infrared Absorption Spectra of H2 Pairs in the First Overtone Band at Temperatures from 20 to 500 K , 1995 .

[10]  K. Strong,et al.  Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm-1 for remote sounding of the atmosphere of jupiter , 1993 .

[11]  R. West,et al.  Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients , 1993 .

[12]  A. Pine Self‐, N2, O2, H2, Ar, and He broadening in the ν3 band Q branch of CH4 , 1992 .

[13]  A. Borysow,et al.  New model of collision-induced infrared absorption spectra of H2He pairs in the 2–2.5 μm range at temperatures from 20 to 300 K: An update , 1992 .

[14]  E. K. Srong Spectral parameters of methane for remote sounding of the Jovian atmosphere , 1992 .

[15]  A. Borysow Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K , 1991 .

[16]  U. Fink,et al.  Gaussian quadrature exponential sum modeling of near infrared methane laboratory spectra obtained at temperatures from 106 to 297 K , 1990 .

[17]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[18]  A. Mckellar The spectrum of gaseous methane at 77 K in the 1.1 – 2.6 μm region: a benchmark for planetary astronomy , 1989 .

[19]  U. Fink,et al.  The infrared spectra of Uranus, Neptune, and Titan from 0.8 to 2.5 microns , 1979 .

[20]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[21]  K. Fox On the rotational partition function for tetrahedral molecules , 1970 .

[22]  T. Elder,et al.  Relative Optical Collision Diameters from the Pressure Broadening of Individual Infrared Absorption Lines , 1953 .