Control of a flexible plate structure using particle swarm optimization

An investigation on control mechanism using particle swarm optimization (PSO) to suppress the vibration of flexible plate has been carried out. Active vibration control (AVC) is implemented for the case of single-input single output (SISO), and the controller is realized in linear parametric form where all parameters are arbitrarily chosen by applying the working mechanism of PSO. The objective function is the mean-squared error of the observed vibration signal. The performance of the controller is assessed in terms of level of attenuation achieved in the power spectral density (PSD) of the observed signal.

[1]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[2]  M. Osman Tokhi,et al.  Dynamic modelling of a single-link flexible manipulator: parametric and non-parametric approaches , 2002, Robotica.

[3]  M.O. Tokhi,et al.  Interactive learning framework for dynamic simulation and control of a two dimensional flexible plate structure , 2007, 2007 International Conference on Intelligent and Advanced Systems.

[4]  M O Tokhi,et al.  Self-Tuning Active Vibration Control in Flexible Beam Structures , 1994 .

[5]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.

[6]  Der-An Wang,et al.  主管領導風格型態與員工工作特性對留職意願的影響 - 以國內高科技資訊電子產業為例;Active vibration control of flexible structures , 2002 .

[7]  Ming Yang,et al.  Particle swarm optimization combined with finite element method for design of ultrasonic motors , 2008 .

[8]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[9]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  M. O. Tokhi,et al.  Modelling of a twin rotor system: A particle swarm optimization approach , 2007 .

[11]  Cornel Mihai Nicolescu,et al.  Active vibration control in palletised workholding system for milling , 2006 .

[12]  Roberto Schirru,et al.  Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring , 2009 .

[13]  M. Osman Tokhi,et al.  Fast convergence strategy for Particle Swarm Optimization using spread factor , 2009, 2009 IEEE Congress on Evolutionary Computation.

[14]  M. O. Tokhi,et al.  Active Vibration Control of Flexible Structures Using Genetic Optimisation , 2006 .

[15]  Xin Peng,et al.  A new particle swarm optimization based auto-tuning of PID controller , 2008, 2008 International Conference on Machine Learning and Cybernetics.

[16]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[17]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[18]  Intan Z. Mat Darus,et al.  Soft computing-based active vibration control of a flexible structure , 2005, Eng. Appl. Artif. Intell..

[19]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[20]  M. O. Tokhi,et al.  Design and implementation of self-tuning active noise control systems , 1991 .

[21]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[22]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).