Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes II. Lithium-Rich, xLi2MnO3⋅(1-x)LiNiaCobMncO2

[1]  Guinevere A. Giffin,et al.  Beneficial effect of propane sultone and tris(trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide , 2016 .

[2]  Yan Chen,et al.  Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries , 2016, Nature Communications.

[3]  D. Aurbach,et al.  Effect of cycling conditions on the electrochemical performance of high capacity Li and Mn-rich cathodes for Li-ion batteries , 2016 .

[4]  Ji‐Guang Zhang,et al.  Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes , 2016 .

[5]  Weishan Li,et al.  Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature , 2016 .

[6]  Li Lu,et al.  In operando X-ray absorption spectroscopy study of charge rate effects on the atomic environment in graphene-coated Li-rich mixed oxide cathode , 2016 .

[7]  Yan Chen,et al.  Operando Lithium Dynamics in the Li‐Rich Layered Oxide Cathode Material via Neutron Diffraction , 2016 .

[8]  D. Aurbach,et al.  Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn‐Rich Cathodes for Li‐Ion Batteries , 2016 .

[9]  J. Tarascon,et al.  The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries , 2016 .

[10]  Hyunchul Kim,et al.  Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries , 2016 .

[11]  R. Axelbaum,et al.  Trace level doping of lithium-rich cathode materials , 2016 .

[12]  Si-Jin Kim,et al.  Highly stable TiO2 coated Li2MnO3 cathode materials for lithium-ion batteries , 2016 .

[13]  J. Dahn,et al.  In Situ X-ray Diffraction Study of Layered Li-Ni-Mn-Co Oxides: Effect of Particle Size and Structural Stability of Core-Shell Materials , 2016 .

[14]  J. Tarascon,et al.  Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.

[15]  Rémi Dedryvère,et al.  Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode , 2015 .

[16]  L. Lei,et al.  Promoting the cyclic and rate performance of lithium-rich ternary materials via surface modification and lattice expansion , 2015 .

[17]  Guoying Chen,et al.  Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides , 2015, Nature Communications.

[18]  Meilin Liu,et al.  Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade. , 2015, Angewandte Chemie.

[19]  M. Wohlfahrt‐Mehrens,et al.  Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0.84O2 cathode , 2015 .

[20]  Evan M. Erickson,et al.  Li+‐Ion Extraction/Insertion of Ni‐Rich Li1+x(NiyCozMnz)wO2 (0.005 , 2015 .

[21]  Weishan Li,et al.  Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte , 2015 .

[22]  Yang Li,et al.  Fluoroethylene Carbonate as Electrolyte Additive for Improving the electrochemical performances of High-Capacity Li1.16[Mn0.75Ni0.25]0.84O2 Material , 2015 .

[23]  J. Tarascon,et al.  Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6. , 2015, Journal of the American Chemical Society.

[24]  M. Minvielle,et al.  XPS investigation of surface reactivity of electrode materials: effect of the transition metal. , 2015, ACS applied materials & interfaces.

[25]  Y. Orikasa,et al.  Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2 , 2015 .

[26]  Brandon R. Long,et al.  Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. , 2015, Journal of the American Chemical Society.

[27]  Jianming Zheng,et al.  Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material , 2015 .

[28]  Jie Xiao,et al.  Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries , 2015 .

[29]  Bingyun Li,et al.  Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries , 2014 .

[30]  B. Polzin,et al.  Functioning Mechanism of AlF3 Coating on the Li- and Mn-Rich Cathode Materials , 2014 .

[31]  Youngsik Kim,et al.  A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for High‐Performance 0.4Li2MnO3–0.6LiNi1/3Co1/3Mn1/3O2 Cathode Materials , 2014 .

[32]  Debasish Mohanty,et al.  Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion , 2014 .

[33]  Doron Aurbach,et al.  New Horizons for Conventional Lithium Ion Battery Technology. , 2014, The journal of physical chemistry letters.

[34]  Evan M. Erickson,et al.  A comparison of atomistic and continuum approaches to the study of bonding dynamics in electrocatalysis: microcantilever stress and in situ EXAFS observations of platinum bond expansion due to oxygen adsorption during the oxygen reduction reaction. , 2014, Analytical chemistry.

[35]  M. Chi,et al.  Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. , 2014, Physical chemistry chemical physics : PCCP.

[36]  Dean J. Miller,et al.  Effect of Cooling Rates on Phase Separation in 0.5Li2MnO3·0.5LiCoO2 Electrode Materials for Li-Ion Batteries , 2014 .

[37]  K. Amine,et al.  Understanding the Rate Capability of High‐Energy‐Density Li‐Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials , 2014 .

[38]  C. Delmas,et al.  Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li Ion Batteries , 2014 .

[39]  Liquan Chen,et al.  Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3 , 2014 .

[40]  Ilias Belharouak,et al.  Effect of interface modifications on voltage fade in 0.5Li2MnO3.0.5LiNi0.375Mn0.375Co0.25O2 cathode materials , 2014 .

[41]  Linhai Zhuo,et al.  Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance , 2013 .

[42]  Debasish Mohanty,et al.  Correlating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. , 2013, Physical chemistry chemical physics : PCCP.

[43]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[44]  Kevin G. Gallagher,et al.  Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes , 2013 .

[45]  J. Colin,et al.  First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. , 2013, Nano letters.

[46]  J. Dahn,et al.  The role of metal site vacancies in promoting Li-Mn-Ni-O layered solid solutions , 2013 .

[47]  Debasish Mohanty,et al.  Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction , 2013 .

[48]  Jacob L. Jones,et al.  Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle , 2013 .

[49]  Kevin G. Gallagher,et al.  Examining Hysteresis in Composite xLi2MnO3·(1−x)LiMO2 Cathode Structures , 2013 .

[50]  Seung M. Oh,et al.  Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries , 2013 .

[51]  J. Tu,et al.  Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method , 2013 .

[52]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[53]  Clare P. Grey,et al.  Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries , 2012 .

[54]  Li Lu,et al.  Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. , 2012, Physical chemistry chemical physics : PCCP.

[55]  Liping Li,et al.  The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3Li2MnO3·0.7LiMn1/3Ni1/3Co1/3O2. , 2012, Physical chemistry chemical physics : PCCP.

[56]  Yuichi Sato,et al.  Relationship between Electrochemical Pre-Treatment and Cycle Performance of a Li-Rich Solid-Solution Layered Li1−α[Ni0.18Li0.20+αCo0.03Mn0.58]O2 Cathode for Li-Ion Secondary Batteries , 2012 .

[57]  C. Delmas,et al.  Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure , 2012 .

[58]  Yuichi Sato,et al.  Activation of a Li-rich Solid-Solution Layered Li[Ni0.18Li0.20Co0.03Mn0.58]O2 Cathode and Retention of High Capacities via an Electrochemical Pretreatment with a Low Discharge Voltage Limit , 2012 .

[59]  Miaofang Chi,et al.  In situ X-ray diffraction study of the lithium excess layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling , 2012 .

[60]  Evan M. Erickson,et al.  In situ electrochemical X-ray absorption spectroscopy of oxygen reduction electrocatalysis with high oxygen flux. , 2012, Journal of the American Chemical Society.

[61]  Tsutomu Ohzuku,et al.  High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1 , 2011 .

[62]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[63]  C. Delmas,et al.  Structure of Li2MnO3 with different degrees of defects , 2010 .

[64]  John T. Vaughey,et al.  Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) , 2008 .

[65]  De-cheng Li,et al.  A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment , 2008 .

[66]  Christopher S. Johnson,et al.  Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C , 2007 .

[67]  Kang Xu,et al.  LiBOB as Additive in LiPF6-Based Lithium Ion Electrolytes , 2005 .

[68]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[69]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .

[70]  P. Bruce,et al.  Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2 , 2004 .

[71]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[72]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[73]  M. Thackeray,et al.  Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications , 1991 .

[74]  Y. Ukyo,et al.  Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy , 2019 .

[75]  M. Winter,et al.  Structural Changes in a Li-Rich 0.5Li2MnO3*0.5LiMn0.4Ni0.4Co0.2O2 Cathode Material for Li-Ion Batteries: A Local Perspective , 2016 .

[76]  D. A. D. Corte,et al.  Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries , 2016 .

[77]  J. Dahn,et al.  A Study of Stacking Faults and Superlattice Ordering in Some Li-Rich Layered Transition Metal Oxide Positive Electrode Materials , 2016 .

[78]  Jianhong Liu,et al.  Synthesis and Electrochemical Performances of Y-Doped Lithium-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material , 2016 .

[79]  M. J. McDonald,et al.  Electrochemical Behavior of Suberonitrile as a High-Potential Electrolyte Additive and Co-Solvent for Li[Li0.2Mn0.56Ni0.16Co0.08]O2 Cathode Material , 2015 .

[80]  Christopher S. Johnson,et al.  Solid State NMR Studies of Li2MnO3 and Li-Rich Cathode Materials: Proton Insertion, Local Structure, and Voltage Fade , 2015 .

[81]  J. Tarascon,et al.  Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials , 2015 .

[82]  J. Tarascon,et al.  Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges , 2015 .

[83]  Martin Winter,et al.  Review—Chemical Analysis for a Better Understanding of Aging and Degradation Mechanisms of Non-Aqueous Electrolytes for Lithium Ion Batteries: Method Development, Application and Lessons Learned , 2015 .

[84]  Claire Villevieille,et al.  Rechargeable Batteries: Grasping for the Limits of Chemistry , 2015 .

[85]  Daniel Sharon,et al.  Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions , 2015 .

[86]  D. Aurbach,et al.  Understanding the Effect of Lithium Bis(oxalato) Borate (LiBOB) on the Structural and Electrochemical Aging of Li and Mn Rich High Capacity Li1.2Ni0.16Mn0.56Co0.08O2 Cathodes , 2015 .

[87]  Nam-Soon Choi,et al.  Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries , 2015 .

[88]  Kevin G. Gallagher,et al.  Quantifying Hysteresis and Voltage Fade in xLi2MnO3●(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content , 2014 .

[89]  D. Aurbach,et al.  Study of the Lithium-Rich Integrated Compound xLi2MnO3·(1-x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and Its Electrochemical Activity as Positive Electrode in Lithium Cells , 2013 .

[90]  Doron Aurbach,et al.  Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating , 2013 .

[91]  Feng Wu,et al.  Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials , 2012 .

[92]  Zhaoqi Sun,et al.  Enhanced Electrochemical Performance of Li [ Li0.2Ni0.2Mn0.6 ] O2 Modified by Manganese Oxide Coating for Lithium-Ion Batteries , 2011 .