Identification of Excitable Media Using Cellular Automata Models

Excitable media represent an important class of spatio-temporal systems which can be studied using cellular automata models. In the present study examples of excitable media behavior generated using simple cellular automata models are introduced. A mutual information algorithm is then derived to determine the neighborhood, the excitation threshold, and the number of excitation states. Based on this information two methods of identifying the rule which describes the excitable media pattern using a multimodel and a polynomial model are introduced. The results are illustrated using simulated examples and real data from a Belousov–Zhabotinskii experiment.

[1]  Rui Jiang,et al.  Cellular automata model simulating complex spatiotemporal structure of wide jams. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  W. Skaggs,et al.  Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .

[3]  S. P. Hastings,et al.  Pattern formation and periodic structures in systems modeled by reaction-diffusion equations , 1978 .

[4]  J. Tyson,et al.  A cellular automaton model of excitable media. II: curvature, dispersion, rotating waves and meandering waves , 1990 .

[5]  Andrew Adamatzky,et al.  Experimental implementation of mobile robot taxis with onboard Belousov-Zhabotinsky chemical medium , 2004 .

[6]  Stephen A. Billings,et al.  Identification of the neighborhood and CA rules from spatio-temporal CA patterns , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[7]  J. Tyson,et al.  A cellular automation model of excitable media including curvature and dispersion. , 1990, Science.

[8]  A. Bardou,et al.  Computer simulation of ventricular fibrillation , 1988 .

[9]  B. Hess,et al.  Isotropic cellular automaton for modelling excitable media , 1990, Nature.

[10]  P. Bak,et al.  A forest-fire model and some thoughts on turbulence , 1990 .

[11]  James P. Keener,et al.  The dynamics of three-dimensional scroll waves in excitable media , 1988 .

[12]  N. Packard,et al.  Extracting cellular automaton rules directly from experimental data , 1991 .

[13]  Stephen A. Billings,et al.  A new fast cellular automata orthogonal least-squares identification method , 2005, Int. J. Syst. Sci..

[14]  Santanu Chattopadhyay,et al.  Additive cellular automata : theory and applications , 1997 .

[15]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[16]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[17]  Andrew Adamatzky,et al.  Identification of Cellular Automata , 2018, Encyclopedia of Complexity and Systems Science.

[18]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[19]  A. I. Adamatskiy,et al.  Identification of additive cellular automata , 1990 .

[20]  Stephen A. Billings,et al.  Identification of probabilistic cellular automata , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  Andrew Ilachinski,et al.  Cellular Automata: A Discrete Universe , 2001 .

[23]  Andrew Adamatzky,et al.  Automatic programming of cellular automata: identification approach , 1997 .

[24]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[25]  Peter Ruoff,et al.  Excitability in a closed stirred Belousov—Zhabotinskii system , 1982 .

[26]  A. Winfree Electrical instability in cardiac muscle: phase singularities and rotors. , 1989, Journal of theoretical biology.

[27]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[28]  Steen Rasmussen,et al.  Urban Settlement Transitions , 2002 .

[29]  M. Gerhardt,et al.  A cellular automaton describing the formation of spatially ordered structures in chemical systems , 1989 .

[30]  Janko Gravner,et al.  Metastability in the Greenberg-Hastings Model , 1993, patt-sol/9303005.

[31]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .