Characterization of Polycrystalline Fe2B Compound with High Saturation Magnetization

[1]  Hongxiang Li,et al.  Effect of metalloid elements on magnetic properties of Fe-based bulk metallic glasses , 2017 .

[2]  Jianfei Sun,et al.  Martensite transformation and magnetic properties of Fe-doped Ni-Mn-Sn alloys with dual phases , 2016 .

[3]  M. Maple,et al.  Evolution of critical pressure with increasing Fe substitution in the heavy-fermion system URu2-xFexSi2 , 2016 .

[4]  G. Yan,et al.  Coercivity and thermal stability improvement in sintered Nd–Fe–B permanent magnets by intergranular addition of Dy–Mn alloy , 2016 .

[5]  S. Cakmaktepe,et al.  Magnetic and structural analysis of sputtered Co90Fe10/Au multilayer films for magnetic recording applications , 2016 .

[6]  K. K. Nielsen,et al.  Comparing superconducting and permanent magnets for magnetic refrigeration , 2016 .

[7]  J. Horwath,et al.  Tunable magnetocaloric effect in transition metal alloys , 2015, Scientific Reports.

[8]  A. Inoue,et al.  Syntheses and corrosion behaviors of Fe-based amorphous soft magnetic alloys with high-saturation magnetization near 1.7 T , 2015 .

[9]  Qingfang Liu,et al.  Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning , 2015, Journal of Materials Science.

[10]  M. Kuz’min,et al.  Magnetic Properties of (Fe,Co)2B Alloys With Easy-Axis Anisotropy , 2014, IEEE Transactions on Magnetics.

[11]  B. Bouhafs,et al.  Structure and magnetic properties of the 3d transition-metal mono-borides TM-B (TM=Mn, Fe, Co) under pressures , 2014 .

[12]  Jijun Zhang,et al.  Development of Fe-based bulk metallic glasses with high saturation magnetization , 2014 .

[13]  P. Nordblad,et al.  Magnetocrystalline anisotropy and the magnetocaloric effect in Fe2P , 2013, 1307.2784.

[14]  Z. Qian,et al.  Effect of Fe substitution on magnetic and magnetocaloric effect in Gd(Co1−xFex)2B2 compounds , 2011 .

[15]  Won Bae Han,et al.  Magnetocaloric effect of Fe64Mn15−xCoxSi10B11 amorphous alloys , 2011 .

[16]  S. Ogut,et al.  Spin-phonon coupling and superconductivity in iron pnictides , 2011 .

[17]  C. A. Nunes,et al.  Magnetization studies of binary and ternary Co-rich phases of the Co–Si–B system , 2010 .

[18]  J. Liu,et al.  Synthesis and Characterization of Magnetic FePt/Au Core/Shell Nanoparticles , 2009 .

[19]  Y. H. Chen,et al.  First principles study on the structural properties and electronic structure of X2B (X = Cr, Mn, Fe, Co, Ni, Mo and W) compounds , 2009 .

[20]  Song Ma,et al.  High saturation magnetization FeB(C) nanocapsules , 2007 .

[21]  M. Tu,et al.  Structural and magnetic characterization of Gd5Si3.5−xGexSn0.5 alloys , 2006 .

[22]  H. Huppertz,et al.  Structure refinements of iron borides Fe2B and FeB , 2006 .

[23]  C. Larica,et al.  Thermal studies and magnetic properties of mechanical alloyed Fe2B , 2002 .

[24]  Georg Ertl,et al.  Fast High-Resolution Magnetic Resonance Imaging Demonstrates Fractality of Myocardial Perfusion in Microscopic Dimensions , 2001, Circulation research.

[25]  A. Inoue,et al.  Magnetovolume effect of Co2B , 1997 .

[26]  Dingsheng Wang,et al.  The self-consistent electronic structure of the interstitial compounds Fe2B and FeB , 1989 .

[27]  A. Ito,et al.  Mössbauer studie of Co2B by doping 1 at %57Fe , 1988 .

[28]  K.H.J. Buschow,et al.  Magneto-optical properties of metallic ferromagnetic materials , 1983 .

[29]  H. Fujiwara,et al.  Magnetization, Lattice Constants and Hydrostatic Pressure Effect on the Curie Temperature of (Co1-xMnx)2B , 1979 .

[30]  T. Shigematsu Mssbauer and Structural Studies on (Fe1-xMnx)2B , 1975 .

[31]  F. W. Vahldiek,et al.  Anisotropy in Single-Crystal Refractory Compounds , 1968 .