The geometrical ergodicity of nonlinear autoregressive models

A structure consisting of a thin, mono-crystalline semiconductive layer on an insulating substrate, and a method of fabrication is detailed. The resultant thin semiconductor-on-insulator substrate is useful as a starting substrate in fabricating microelectronic devices.

[1]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[2]  A S Azari,et al.  Modeling mortality fluctuations in Los Angeles as functions of pollution and weather effects. , 1988, Environmental research.

[3]  ON THE NULL RECURRENCE AND TRANSIENCE OF A FIRST-ORDER SETAR MODEL , 1991 .

[4]  D. Tjøstheim Non-linear time series and Markov chains , 1990, Advances in Applied Probability.

[5]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[6]  Sean P. Meyn,et al.  State-Dependent Criteria for Convergence of Markov Chains , 1994 .

[7]  Ruey S. Tsay,et al.  On the Ergodicity of Tar(1) Processes , 1991 .

[8]  E. Nummelin General irreducible Markov chains and non-negative operators: Preface , 1984 .

[9]  H. Tong,et al.  On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations , 1985, Advances in Applied Probability.

[10]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[11]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[12]  R. Tweedie Criteria for classifying general Markov chains , 1976, Advances in Applied Probability.

[13]  A. A. Weiss,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[14]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[15]  Kung-Sik Chan,et al.  A Note on Noisy Chaos , 1994 .

[16]  Sam Woolford,et al.  A multiple-threshold AR(1) model , 1985, Journal of Applied Probability.