Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1–10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.RésuméForsmark en Suède a été proposé comme site pour le stockage en milieu géologique de combustibles nucléaires usagés de haut niveau, étant localisé à une profondeur d’environ 470 m dans une roche cristalline fracturé. L’évaluation de la sécurité d’un tel stockage a exigé une approche pluridisciplinaire pour évaluer l’impact des conditions hydrogéologiques et hydrogéochimiques à proximité du site de stockage et dans un contexte régional plus large. Evaluer les conséquences de libérations potentielles de radionucléides nécessite des informations spécifiques au site concernant les détails des écoulements d’eau souterraine à l’échelle de l’emplacement des casiers de stockage (1–10 m) ainsi que les détails des écoulements et de leur composition à l’échelle des cheminements d’eau souterraine entre les installations et la surface (500 m à 5 km). L’objet de cet article est de fournir une illustration des techniques de modélisation multi-échelle et les résultats obtenus lors de la combinaison des écoulements à l’échelle local dans les fractures autour des sources de contamination potentielle avec un écoulement d’eau souterraine à l’échelle régionale et du transport soumis à l’ évolution naturelle du système. L’approche définie est nouvelle, car elle intègre deux échelles différentes dans un modèle et différents niveaux de détail, combinant un réseau de fractures discrètes et un milieu poreux continu équivalent, pour représenter le substratum rocheux fracturé.ResumenSe ha propuesto a Forsmark en Suecia como un sitio de un repositorio geológico para combustible nuclear de alta actividad utilizado, para ser localizado a una profundidad de aproximadamente 470 m en roca cristalina fracturada. La evaluación de seguridad para el repositorio ha requerido un enfoque multidisciplinario para evaluar el impacto de las condiciones hidrogeológicas e hidrogeoquímicas cercanas al repositorio y en un contexto regional más amplio. La evaluación de las consecuencias de la liberación potencial de radionucleidos requiere información cuantitativa del sitio específico relativo a los detalles del flujo de agua subterránea en la escala de las localizaciones individuales de los depósitos de residuos (1–10 m) así como detalles del flujo de agua subterránea y la composición en la escala de trayectorias de agua subterránea entre la instalación y la superficie (500 m to 5 km). El propósito de este artículo es proporcionar una ilustración de las técnicas de modelado multiescala y los resultados obtenidos cuando se combinan aspectos de flujos a una escala local en fracturas alrededor de una fuente contaminante potencial con el flujo a escala regional del agua subterránea y el transporte sujeto a la evolución natural del sistema. El enfoque abordado es novedoso, en la medida que incorpora diferentes escalas de modelo y diferentes niveles de detalle, combinando redes de fracturas discretas y un medio poroso continuo de representaciones equivalentes del basamento fracturado.摘要瑞典的福什马克计划被选为废弃高强度核燃料地质储藏地,大约为470米之下的断裂结晶岩中。储藏地安全评价需要多方论证方法评估储藏地附近较大区域范围内水文地质和水文化学条件的影响。评价潜在放射性核素释放的后果需要有定量的场地特定的信息,包括单个废料储藏桶地点(1 到10 米)尺度的、与地下水流相关的详细情况及设施和地表之间地下水通道(500 米到5 公里)尺度的、地下水流和组分的详细情况。本文的目的就是论述多尺度模拟技术,并且论述潜在污染源周围断裂中局部尺度水流和系统自然演化制约下区域尺度地下水流和传输结合后获取的结果。所列方法新颖,因为这个方法把不同尺度模型和不同级别的详细情况结合在一起,包括把离散裂隙网络和断裂基岩相对应的连续孔隙介质结合在一起。ResumoForsmark, na Suécia, foi proposto como local para depósito geológico de combustível nuclear usado de alta atividade, o qual será colocado a uma profundidade aproximada de 470 m em rochas cristalinas fraturadas. A avaliação de segurança para o depósito requereu uma abordagem multidisciplinar para avaliação do impacte das condições hidrogeológicas e hidrogeoquímicas próximas ao depósito e num contexto regional mais alargado. A avaliação das consequências da potencial libertação de radionuclídeos requere informação quantitativa específica do local em relação aos detalhes do fluxo de água subterrânea à escala das localizações dos contentores individuais de resíduos (1–10 m), bem como de detalhes do fluxo de água subterrânea e sua composição à escala dos percursos da água entre o local do depósito e a superfície (500 m to 5 km). O propósito deste artigo é providenciar uma ilustração das técnicas da modelação de fluxo multi-escala e dos resultados obtidos quando se combinam aspetos de fluxo de escala local em fraturas em redor de uma potencial fonte contaminante com fluxo e transporte de água subterrânea à escala regional sujeitos à evolução natural do sistema. A abordagem estabelecida é nova, uma vez que incorpora diferentes escalas do modelo e diferentes níveis de detalhe, combinando uma rede de fraturas discretas e representações de meios contínuos equivalentes ao maciço cristalino fraturado.

[1]  Approaches to confirmatory testing of a groundwater flow model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden , 2014, Hydrogeology Journal.

[2]  Svensk Kärnbränslehantering Ab,et al.  Äspö Hard Rock Laboratory , 2006 .

[3]  A. Hoch,et al.  Self‐consistency of a heterogeneous continuum porous medium representation of a fractured medium , 2000 .

[4]  L. Durlofsky,et al.  Generation of coarse‐scale continuum flow models from detailed fracture characterizations , 2006 .

[5]  Peter Jackson,et al.  A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden , 2014, Hydrogeology Journal.

[6]  Ivars Neretnieks,et al.  Diffusion in the rock matrix: An important factor in radionuclide retardation? , 1980 .

[7]  P. Hsieh,et al.  Integrated Multi‐Scale Characterization of Ground‐Water Flow and Chemical Transport in Fractured Crystalline Rock at the Mirror Lake Site, New Hampshire , 2013 .

[8]  N. Odling The scaling of hydraulic conductivity in rock fracture zones , 2001 .

[9]  Johan Andersson,et al.  Site-descriptive modelling for a final repository for spent nuclear fuel in Sweden , 2013, Environmental Earth Sciences.

[10]  C. Tsang,et al.  A regional‐scale particle‐tracking method for nonstationary fractured media , 2004 .

[11]  Scott L. Painter,et al.  Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden) , 2012, Hydrogeology Journal.

[12]  John D. Bredehoeft,et al.  Ground-water models cannot be validated , 1992 .

[13]  Vladimir Cvetkovic,et al.  Inference of field‐scale fracture transmissivities in crystalline rock using flow log measurements , 2010 .

[14]  M. F. Lough,et al.  Hierarchical modeling of flow in naturally fractured formations with multiple length scales , 2001 .

[15]  Alireza Baghbanan,et al.  Hydraulic properties of fractured rock masses with correlated fracture length and aperture , 2007 .

[16]  Andrew V. Wolfsberg,et al.  Rock Fractures and Fluid Flow: Contemporary Understanding and Applications , 1997 .

[17]  S. P. Neuman,et al.  Trends, prospects and challenges in quantifying flow and transport through fractured rocks , 2005 .

[18]  Hua Cheng,et al.  Radionuclide transport during glacial cycles: Comparison of two approaches for representing flow transients , 2013 .

[19]  D. Boutt,et al.  A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain , 2010 .

[20]  Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM Site Forsmark. , 2008 .

[21]  J. Selroos,et al.  Overview of hydrogeological safety assessment modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden , 2014, Hydrogeology Journal.

[22]  Knut-Andreas Lie,et al.  Modelling of Multiscale Structures in Flow Simulations for Petroleum Reservoirs , 2007, Geometric Modelling, Numerical Simulation, and Optimization.

[23]  Knut-Andreas Lie,et al.  Geometric Modelling, Numerical Simulation, and Optimization - Applied Mathematics at SINTEF , 2007, Geometric Modelling, Numerical Simulation, and Optimization.

[24]  X. Sanchez‐Vila,et al.  On matrix diffusion: formulations, solution methods and qualitative effects , 1998 .

[25]  Auli Niemi,et al.  Hydraulic characterization and upscaling of fracture networks based on multiple‐scale well test data , 2000 .

[26]  Quanlin Zhou,et al.  Flow and transport in unsaturated fractured rock: effects of multiscale heterogeneity of hydrogeologic properties. , 2003, Journal of contaminant hydrology.

[27]  P. Witherspoon,et al.  Porous media equivalents for networks of discontinuous fractures , 1982 .

[28]  E. Tullborg,et al.  Modelling the evolution of hydrochemical conditions in the Fennoscandian Shield during Holocene time using multidisciplinary information , 2008 .

[29]  Vladimir Cvetkovic,et al.  Transport of reactive tracers in rock fractures , 1999, Journal of Fluid Mechanics.

[30]  Lee Hartley,et al.  Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden , 2013 .

[31]  Donald M. Reeves,et al.  A tempered multiscaling stable model to simulate transport in regional-scale fractured media , 2010 .

[32]  Martin Stigsson,et al.  A transmissivity model for deformation zones in fractured crystalline rock and its possible correlation to in situ stress at the proposed high-level nuclear waste repository site at Forsmark, Sweden , 2014, Hydrogeology Journal.

[33]  D. Ophori A simulation of large‐scale groundwater flow and travel time in a fractured rock environment for waste disposal purposes , 2004 .

[34]  Gunnar Gustafson,et al.  The Äspö Task Force on groundwater flow and transport of solutes: bridging the gap between site characterization and performance assessment for radioactive waste disposal in fractured rocks , 2009 .

[35]  Auli Niemi,et al.  Regional channelized transport in fractured media with matrix diffusion and linear sorption , 2008 .

[36]  M. Schwartz Modelling radionuclide transport in large fractured-media systems: the example of Forsmark, Sweden , 2012, Hydrogeology Journal.

[37]  Peter Clive. Robinson,et al.  Connectivity, flow and transport in network models of fractured media , 1984 .

[38]  S. P. Neuman Multiscale relationships between fracture length, aperture, density and permeability , 2008 .

[39]  U. Kautsky,et al.  Integration of hydrological and ecological modelling for the assessment of a nuclear waste repository , 2009 .

[40]  William Dershowitz,et al.  Rock joint systems , 1984 .

[41]  Viktor Popov,et al.  Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media , 2005 .

[42]  B. Berkowitz Characterizing flow and transport in fractured geological media: A review , 2002 .

[43]  I. Neretnieks Nuclear Waste Repositories in Crystalline Rock- an Overview of Flow and Nuclide Transport Mechanisms , 1994 .