Boosting video tracking performance by means of Tabu Search in intelligent visual surveillance systems

In this paper, we present a fast and efficient technique for the data association problem applied to visual tracking systems. Visual tracking process is formulated as a combinatorial hypotheses search with a heuristic evaluation function taking into account structural and specific information such as distance, shape, color, etc.We introduce a Tabu Search algorithm which performs a search on an indirect space. A novel problem formulation allows us to transform any solution into the real search space, which is needed for fitness calculation, in linear time. This new formulation and the use of auxiliary structures yields a fast transformation from a blob-to-track assignment space to the real shape and position of tracks space (while calculating fitness in an incremental fashion), which is key in order to produce efficient and fast results. Other previous approaches are based on statistical techniques or on evolutionary algorithms. These techniques are quite efficient and robust although they cannot converge as fast as our approach.

[1]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[2]  Z. M. Hefed Object tracking , 1999 .

[3]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[4]  Oscar Cordón,et al.  Image registration with iterated local search , 2006, J. Heuristics.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[7]  Miguel A. Patricio,et al.  Multi-Agent Framework in Visual Sensor Networks , 2007, EURASIP J. Adv. Signal Process..

[8]  Warwick Harvey,et al.  Solving the MOLR and Social Golfers Problems , 2005, CP.

[9]  P. Willett,et al.  Multiple model PMHT and its application to the benchmark radar tracking problem , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[10]  S. Shams Neural network optimization for multi-target multi-sensor passive tracking , 1996 .

[11]  Edward Y. Chang,et al.  Proceedings of the third ACM international workshop on Video surveillance & sensor networks , 2005 .

[12]  W.Y. Kan,et al.  A generalization of the PDA target tracking algorithm using hypothesis clustering , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[13]  Miguel A. Patricio,et al.  Computational Intelligence in Visual Sensor Networks: Improving Video Processing Systems , 2008 .

[14]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[15]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[16]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[17]  Y. Bar-Shalom,et al.  IMM estimation for multitarget-multisensor air traffic surveillance , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[18]  Ronald E. Goldstein,et al.  Principles and techniques , 2009 .

[19]  F. Castanedo,et al.  Extending surveillance systems capabilities using BDI cooperative sensor agents , 2006, VSSN '06.

[20]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[21]  D. B. Hillis,et al.  Using a genetic algorithm for multi-hypothesis tracking , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[22]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  David Beymer,et al.  Real-Time Tracking of Multiple People Using Continuous Detection , 1999 .

[24]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking , 1995 .

[25]  Bojan Cestnik,et al.  Estimating Probabilities: A Crucial Task in Machine Learning , 1990, ECAI.

[26]  Stephen J. Maybank,et al.  Visual Surveillance for Moving Vehicles , 1998, International Journal of Computer Vision.

[27]  Ajith Abraham,et al.  Computational Intelligence in Multimedia Processing: Recent Advances , 2008 .

[28]  Miguel A. Patricio,et al.  Video Tracking Association Problem Using Estimation of Distribution Algorithms in Complex Scenes , 2007, IWINAC.

[29]  M P Gardner HIGHWAY TRAFFIC MONITORING , 2000 .

[30]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[32]  Heinrich Niemann,et al.  2D-Object Tracking Based on Projection-Histograms , 1998, ECCV.

[33]  Trista Pei-chun Chen,et al.  Computer Vision Workload Analysis: Case Study of Video Surveillance Systems , 2005 .

[34]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[35]  Rex K. Kincaid,et al.  Reactive Tabu Search and Sensor Selection in Active Structural Acoustic Control Problems , 1998, J. Heuristics.

[36]  David Pisinger,et al.  Guided Local Search for Final Placement in VLSI Design , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[37]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Pascal Van Hentenryck,et al.  Scheduling Social Golfers Locally , 2005, CPAIOR.

[39]  Tore Grünert,et al.  Local Search for Vehicle Routing and Scheduling Problems: Review and Conceptual Integration , 2005, J. Heuristics.

[40]  H. Muhlenbein,et al.  The Factorized Distribution Algorithm for additively decomposed functions , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[41]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[42]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[43]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Mei Han,et al.  An algorithm for multiple object trajectory tracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[45]  Valerio Recagno,et al.  Security in Ports: the User Requirements for Surveillance System , 1999 .