Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations

Abstract Gas sensor devices have traditionally comprised thin films of metal oxides, with tin oxide, zinc oxide and indium oxide being some of the most common materials employed. With the recent discovery of novel metal oxide nanostructures, sensors comprising nano-arrays or single nanostructures have shown improved performance over the thin films. The improved response of the nanostructures to different gases has been primarily attributed to the highly single crystalline surfaces as well as large surface area of the nanostructures. In this paper the properties of clean and defected quasi one-dimensional ZnO nanostructures, including hexagonal and triangular nanowires, nanotubes and facetted nanotubes are reviewed. The adsorption of atoms and molecules on the ZnO nanostructures are also reviewed and the findings are compared to studies examining similar reactions on nanostructured metal oxide surfaces for sensing purposes. While both experimental and theoretical approaches have been employed to examine gas sensor reactions, this review focuses on studies that employ electronic structure calculations, which primarily concentrate on using density functional theory. Computational studies have been useful in elucidating the reaction mechanism, binding strength, charge transfer as well as other electronic and structural properties of the nanomaterials and the gas-sensor interaction. Despite these studies there are still significant areas of research that need to be pursued that will assist in the link between theoretical and experimental findings, as well as advancing the current chemical and physical understanding of these novel materials. A summary and outlook for future directions of this exciting area of research is also provided.

[1]  C. Duke,et al.  Atomic geometry of cleavage surfaces of tetrahedrally coordinated compound semiconductors , 1976 .

[2]  Bin Wen,et al.  Relative stability of nanosized wurtzite and graphitic ZnO from density functional theory , 2008 .

[3]  I. Yarovsky,et al.  Density functional theory modelling of ZnO(101¯0) and ZnO(21¯1¯0) surfaces: Structure, properties and adsorption of N2O , 2010 .

[4]  Ab initio methods for surfaces and interfaces : Status and perspectives , 1997 .

[5]  Muhammad Riaz,et al.  Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods , 2009, Sensors.

[6]  M. Spencer,et al.  DFT modelling of hydrogen on Cu(110)- and (111)-type clusters , 2002 .

[7]  T. Frauenheim,et al.  Energetic and electronic properties of hydrogen passivated ZnO nanowires , 2008 .

[8]  Ning Wang,et al.  Ultrathin ZnO nanorods: facile synthesis, characterization and optical properties , 2010, Nanotechnology.

[9]  Steiner,et al.  Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. , 1996, Physical review. B, Condensed matter.

[10]  Z. Fan,et al.  Zinc oxide nanostructures: synthesis and properties. , 2005, Journal of nanoscience and nanotechnology.

[11]  Nicola Donato,et al.  CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route , 2009 .

[12]  Jinhuai Liu,et al.  Electrical nanogap devices for biosensing , 2010 .

[13]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[14]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[15]  Jijun Zhao,et al.  Metallization of ZnO nanowires from partial hydrogen adsorption , 2007 .

[16]  Ruiqin Q. Zhang,et al.  Theoretical Exploration of the Structural, Electronic, and Magnetic Properties of ZnO Nanotubes with Vacancies, Antisites, and Nitrogen Substitutional Defects , 2010 .

[17]  I. Yarovsky,et al.  Adsorption of atomic nitrogen and oxygen on surface: a density functional theory study , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Yanfa Yan,et al.  Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO ( 10 1 ¯ 0 ) surface , 2005 .

[19]  N. Chopra Multifunctional and multicomponent heterostructured one-dimensional nanostructures: advances in growth, characterisation, and applications , 2010 .

[20]  I-Cherng Chen,et al.  Laterally grown ZnO nanowire ethanol gas sensors , 2007 .

[21]  Xiaojun Wu,et al.  Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study , 2008 .

[22]  C. Ronning,et al.  Optical size effects in ultrathin ZnO nanowires , 2007 .

[23]  M. Lazzeri,et al.  Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO2(110)surface , 2003 .

[24]  X. Q. Wang,et al.  Electronic structure and magnetic properties of Mn-doped ZnO nanotubes: An ab initio study , 2010 .

[25]  Yuan Zhang,et al.  Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties , 2009 .

[26]  Madhu Menon,et al.  Defect-induced optical absorption in the visible range in ZnO nanowires , 2009 .

[27]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[28]  E. Solomon,et al.  Photoelectron spectroscopic and electronic structure studies of CH(2)O bonding and reactivity on ZnO surfaces: steps in the methanol synthesis reaction. , 2004, Inorganic chemistry.

[29]  Jenshan Lin,et al.  Hydrogen-selective sensing at room temperature with ZnO nanorods , 2005 .

[30]  P. Bagus,et al.  Size dependence of chemisorptive properties based on surface cluster models: CO/Cu(100) and CO/Al(100) , 1988 .

[31]  Wanlin Guo,et al.  Electronic and Mechanical Coupling in Bent ZnO Nanowires , 2009, Advanced materials.

[32]  Johann Riegel,et al.  Exhaust gas sensors for automotive emission control , 2002 .

[33]  Daniel Hofstetter,et al.  ZnO Devices and Applications: A Review of Current Status and Future Prospects , 2010, Proceedings of the IEEE.

[34]  Christof Wöll,et al.  The chemistry and physics of zinc oxide surfaces , 2007 .

[35]  Dan Zhang,et al.  Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method , 2010 .

[36]  Yurong Yang,et al.  The optical properties of one-dimensional ZnO: A first-principles study , 2007 .

[37]  Shoou-Jinn Chang,et al.  ZnO Nanotube Ethanol Gas Sensors , 2008 .

[38]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[39]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[40]  Giorgio Sberveglieri,et al.  Metal oxide nanowires as chemical sensors , 2010 .

[41]  Baolin Wang,et al.  Cage and tube structures of medium-sized zinc oxide clusters (ZnO)n (n=24, 28, 36, and 48). , 2008, The Journal of chemical physics.

[42]  D. Marx,et al.  Water adsorption on ZnO(1010): from single molecules to partially dissociated monolayers. , 2006, Physical chemistry chemical physics : PCCP.

[43]  Bette Hileman government insights: Finalize The Long-Awaited Dioxin Assessment , 2000 .

[44]  Heinz Kalt,et al.  65 years of ZnO research – old and very recent results , 2010 .

[45]  I. Yarovsky,et al.  Adsorption of NO and NO 2 on the ZnO( 2 1 1 0 ) surface: A DFT study , 2009 .

[46]  Seungho Cho,et al.  The effects of vitamin C on ZnO crystal formation , 2010 .

[47]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[48]  B. Meyer,et al.  Hydrogen induced metallicity on the ZnO(1010) surface. , 2005, Physical review letters.

[49]  Wei Fan,et al.  Hydrogen and oxygen adsorption on ZnO nanowires : A first-principles study , 2009 .

[50]  S. Choopun,et al.  Characterization of ZnO Nanobelt-Based Gas Sensor for ${\rm H}_{2}$, ${\rm NO}_{2}$, and Hydrocarbon Sensing , 2007, IEEE Sensors Journal.

[51]  Jürgen Hafner,et al.  Materials simulations using VASP - a quantum perspective to materials science , 2007, Comput. Phys. Commun..

[52]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[53]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[54]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[55]  Z. Zhiyong,et al.  First-principles study of the electronic and optical properties of ZnO nanowires , 2009 .

[56]  Zhihao Yuan,et al.  Nanopillar ZnO gas sensor for hydrogen and ethanol , 2007 .

[57]  Xiao Shen,et al.  Wire versus tube: stability of small one-dimensional ZnO nanostructures. , 2007, Nano letters.

[58]  Zi-zhong Zhu,et al.  Direct to indirect band gap transition in ultrathin ZnO nanowires under uniaxial compression , 2009 .

[59]  Lixin Zhang,et al.  Structural transformation of ZnO nanostructures , 2007 .

[60]  Hermann,et al.  Size dependence of surface cluster models: CO adsorbed on Cu(100). , 1987, Physical review. B, Condensed matter.

[61]  Sangsig Kim,et al.  Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO , 2009 .

[62]  Caihong Wang,et al.  Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods , 2006 .

[63]  E. Longo,et al.  The interaction of H2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom Study , 2004 .

[64]  J. Hafner Atomic-scale computational materials science ☆ , 2000 .

[65]  J. Park,et al.  Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays , 2009, Nanoscale research letters.

[66]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[67]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[68]  J. Reimers Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology , 2011 .

[69]  I. Bello,et al.  Tuning Electronic Structures of ZnO Nanowires by Surface Functionalization: A First-Principles Study , 2010 .

[70]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[71]  Y. Duan,et al.  First-Principles Study of Magnetic Properties of 3dTransition Metals Doped in ZnO Nanowires , 2009, Nanoscale research letters.

[72]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[73]  Jiaqiang Xu,et al.  Gas sensing properties of ZnO nanorods prepared by hydrothermal method , 2005 .

[74]  Xiao-Hua Zhang,et al.  Structural and electronic properties of ZnO nanotubes from density functional calculations , 2007 .

[75]  Yongsheng Chen,et al.  Size- and Surface-dependent Stability, Electronic Properties, and Potential as Chemical Sensors: Computational Studies on One-dimensional ZnO Nanostructures , 2008 .

[76]  Matteo Ferroni,et al.  Metal oxide nanowires: Preparation and application in gas sensing , 2009 .

[77]  Yan Xiao-hong,et al.  Common electronic band gaps and similar optical properties of ZnO nanotubes , 2008 .

[78]  J. Zhong,et al.  First principles study of the band structure and dielectric function of (6,6) single-walled zinc oxide nanotube , 2008 .

[79]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[80]  M. Terrones,et al.  Effect of impurities on the electronic and magnetic properties of zinc oxide nanostructures , 2010 .

[81]  C. Duke,et al.  Atomic geometry of the low‐index surfaces of ZnO: LEED analysis , 1976 .

[82]  Wojtek Wlodarski,et al.  A ZnO nanorod based layered ZnO/64° YX LiNbO3 SAW hydrogen gas sensor , 2007 .

[83]  Strain-induced structural and direct-to-indirect band gap transition in ZnO nanotubes , 2010 .

[84]  Alexey A. Sokol,et al.  Zinc oxide: A case study in contemporary computational solid state chemistry , 2008, J. Comput. Chem..

[85]  Yanfa Yan,et al.  Structure and Energetics of Water Adsorbed on the ZnO(1010) Surface , 2005 .

[86]  Ruiqin Q. Zhang,et al.  Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires , 2007 .

[87]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[88]  Seung-Ho Jung,et al.  High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation , 2009 .

[89]  Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes , 2005, cond-mat/0511274.

[90]  Lixin Zhang,et al.  Young’s moduli of ZnO nanoplates: Ab initio determinations , 2006 .

[91]  Haibin Yang,et al.  Growth and selective acetone detection based on ZnO nanorod arrays , 2009 .

[92]  Z. Zhiyong,et al.  First-Principles Study on Magnetic Properties of V-Doped ZnO Nanotubes , 2009 .

[93]  Chuanhai Jiang,et al.  Fabrication of ZnO nanotubes with ultrathin wall by electrodeposition method , 2008 .

[94]  Binghai Yan,et al.  Hydrogen-induced metallization of zinc oxide(21¯1¯0)surface and nanowires: The effect of curvature , 2008 .

[95]  R. Melnik,et al.  Geometry Dependent Current-Voltage Characteristics of ZnO Nanostructures: A Combined Nonequilibrium Green’s Function and Density Functional Theory Study , 2009 .

[96]  J. Morante,et al.  Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces , 2009 .

[97]  David P. Norton,et al.  Hydrogen and ozone gas sensing using multiple ZnO nanorods , 2005 .

[98]  I. Yarovsky,et al.  Adsorption of NO2 on Oxygen Deficient ZnO(21̅1̅0) for Gas Sensing Applications: A DFT Study , 2010 .

[99]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[100]  Yuan Zhang,et al.  Uniform ZnO nanorods can be used to improve the response of ZnO gas sensor , 2008 .

[101]  Taihong Wang,et al.  Ab Initio Study Of Zno-Based Gas-Sensing Mechanisms: Surface Reconstruction And Charge Transfer , 2009 .

[102]  B. Meyer,et al.  Structure and dynamics of CO overlayers on a hydroxylated metal oxide: the polar ZnO(0001) surface. , 2006, Physical chemistry chemical physics : PCCP.

[103]  Guanghou Wang,et al.  The stability and electronic structure of single-walled ZnO nanotubes by density functional theory , 2007 .

[104]  X. Q. Wang,et al.  Adsorption of an Mn atom on a ZnO sheet and nanotube: a density functional theory study , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[105]  Chi-Jung Chang,et al.  Selective growth of ZnO nanorods for gas sensors using ink-jet printing and hydrothermal processes , 2010 .

[106]  Wanlin Guo,et al.  Electric-Field- and Hydrogen-Passivation-Induced Band Modulations in Armchair ZnO Nanoribbons , 2010 .

[107]  Guonan Chen,et al.  A highly sensitive H2O2 sensor based on zinc oxide nanorod arrays film sensing interface. , 2010, The Analyst.

[108]  Yang-Kyu Choi,et al.  Chemical sensors based on nanostructured materials , 2007 .

[109]  Y. Duan,et al.  Magnetic coupling properties of Mn-doped ZnO nanowires: First-principles calculations , 2008 .

[110]  R. H. Miwa,et al.  An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires , 2009, Nanotechnology.

[111]  N. Harrison,et al.  An ab Initio Study of Hydrogen Adsorption on ZnO(101̄0) , 2001 .

[112]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[113]  Joseph Dvorak,et al.  Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3 , 2000 .

[114]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[115]  Richard E. Cavicchi,et al.  A universal approach to electrically connecting nanowire arrays using nanoparticles—application to a novel gas sensor architecture , 2006 .

[116]  J. Son,et al.  Horizontal ZnO Nanowires for Gas Sensor Application: Al-Doping Effect on Sensitivity , 2009 .

[117]  Jinlong Yang,et al.  Piezoelectricity in ZnO nanowires: A first-principles study , 2006 .

[118]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[119]  C. Duke,et al.  Calculation of low-energy-electron-diffraction intensities from ZnO (101̄0). II. Influence of calculational procedure, model potential, and second-layer structural distortions , 1978 .

[120]  J. H. Lee,et al.  NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method , 2006 .

[121]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[122]  T. Frauenheim,et al.  Covalent functionalization of ZnO surfaces: A density functional tight binding study , 2009 .

[123]  Lin-wang Wang Novel computational methods for nanostructure electronic structure calculations. , 2010, Annual review of physical chemistry.

[124]  Kyung Soo Park,et al.  Gas sensing properties of defect-controlled ZnO-nanowire gas sensor , 2008 .

[125]  Guanghou Wang,et al.  Structural, mechanical, and electronic properties of ultrathin ZnO nanowires , 2008 .

[126]  C. Duke,et al.  Low-energy-electron-diffraction analysis of the atomic geometry of ZnO (10¯10) , 1977 .

[127]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[128]  Bao-lin Wang,et al.  Different mechanical properties of the pristine and hydrogen passivated ZnO nanowires , 2009 .

[129]  W. Wlodarski,et al.  Density Functional Theory Study of ZnO Nanostructures for NO and NO2 Sensing , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[130]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[131]  Veaceslav Ursaki,et al.  Synthesis and characterization of ZnO nanowires for nanosensor applications , 2010 .

[132]  D. Marx,et al.  First-principles study of CO adsorption on ZnO surfaces , 2003 .

[133]  Lianmao Peng,et al.  Quantitative Study on the Effect of Surface Treatments on the Electric Characteristics of ZnO Nanowires , 2008 .

[134]  H. Pan,et al.  Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio. , 2008, ACS nano.

[135]  H. Ye,et al.  Origin of the phase transition of AlN, GaN, and ZnO nanowires , 2009 .

[136]  Florin Udrea,et al.  ZnO nanowires grown on SOI CMOS substrate for ethanol sensing , 2010 .

[137]  Chi‐Man Lawrence Wu,et al.  N–P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas , 2009, Nanotechnology.

[138]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[139]  A. Djurišić,et al.  Gas-sensing properties of thick film based on ZnO nano-tetrapods , 2005 .

[140]  M. Koyama,et al.  Theoretical Study on Electronic and Electrical Properties of Nanostructural ZnO , 2008 .

[141]  Zhongfang Chen,et al.  Do all wurtzite nanotubes prefer faceted ones? , 2009, The Journal of chemical physics.

[142]  Yulin Deng,et al.  Solution synthesis of one-dimensional ZnO nanomaterials and their applications. , 2010, Nanoscale.

[143]  I. Yarovsky,et al.  ZnO Nanostructures for Gas Sensing: Interaction of NO2, NO, O, and N with the ZnO(101̅0) Surface , 2010 .

[144]  A. Ng,et al.  ZnO nanostructures for optoelectronics: Material properties and device applications , 2010 .

[145]  S. L. Elizondo,et al.  First-Principles Study of the Optical Properties of ZnO Single-Wall Nanotubes† , 2007 .

[146]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[147]  Joydeep Dutta,et al.  Hydrothermal growth of ZnO nanostructures , 2009, Science and technology of advanced materials.

[148]  Huajian Gao,et al.  First-principles study on ZnO nanoclusters with hexagonal prism structures , 2007 .

[149]  H. Metiu,et al.  Selective promotion of different modes of methanol adsorption via the cation substitutional doping of a ZnO(101¯0) surface , 2008 .

[150]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[151]  Zhong Lin Wang Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications , 2009 .

[152]  Bálint Aradi,et al.  Toward an Accurate Density-Functional Tight-Binding Description of Zinc-Containing Compounds. , 2009, Journal of chemical theory and computation.

[153]  Q. Sun,et al.  N-doped ZnO thin films and nanowires: energetics, impurity distribution and magnetism , 2009 .

[154]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[155]  Tianyou Zhai,et al.  ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors , 2009 .

[156]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[157]  S. Woodley,et al.  Modelling nano-clusters and nucleation. , 2010, Physical chemistry chemical physics : PCCP.

[158]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .