Multiplet ligand-field theory using Wannier orbitals

We demonstrate how ab initio cluster calculations including the full Coulomb vertex can be done in the basis of the localized, generalized Wannier orbitals which describe the low-energy density functional (LDA) band structure of the infinite crystal, e.g. the transition metal 3d and oxygen 2p orbitals. The spatial extend of our 3d Wannier orbitals (orthonormalized Nth order muffin-tin orbitals) is close to that found for atomic Hartree-Fock orbitals. We define Ligand orbitals as those linear combinations of the O 2p Wannier orbitals which couple to the 3d orbitals for the chosen cluster. The use of ligand orbitals allows for a minimal Hilbert space in multiplet ligand-field theory calculations, thus reducing the computational costs substantially. The result is a fast and simple ab initio theory, which can provide useful information about local properties of correlated insulators. We compare results for NiO, MnO and SrTiO3 with x-ray absorption, inelastic x-ray scattering, and photoemission experiments. The multiplet ligand field theory parameters found by our ab initio method agree within ~10% to known experimental values.

[1]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[2]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[3]  R. Eder Correlated band structure of NiO, CoO and MnO by variational cluster approximation , 2008, 0806.0266.

[4]  A. I. Lichtenstein,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004 .

[5]  K. Held,et al.  Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type. , 2006, Physical review letters.

[6]  Peter Blaha,et al.  Full-potential, linearized augmented plane wave programs for crystalline systems , 1990 .

[7]  R. Broer,et al.  Theoretical Study of Local Electronic Transitions in the NiO (100) Surface , 1999 .

[8]  O. Gunnarsson,et al.  Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe. , 1989, Physical review. B, Condensed matter.

[9]  W. Nieuwpoort,et al.  Ab Initio Calculations on KNiF_{3}: Ligand-Field Effects , 1972 .

[10]  Christoph Friedrich,et al.  Effective Coulomb interaction in transition metals from constrained random-phase approximation , 2011, 1103.5593.

[11]  Frank Neese,et al.  Advanced aspects of ab initio theoretical optical spectroscopy of transition metal complexes: Multiplets, spin-orbit coupling and resonance Raman intensities , 2007 .

[12]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[13]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[14]  F. Lechermann,et al.  Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials , 2006 .

[15]  A. Tanaka,et al.  High multipole transitions in NIXS: Valence and hybridization in 4f systems , 2007, 0712.1242.

[16]  V. Anisimov,et al.  Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[18]  A. Lüchow,et al.  Vanadium oxide compounds with quantum Monte Carlo. , 2008, Physical chemistry chemical physics : PCCP.

[19]  V. Anisimov,et al.  Local correlations and hole doping in NiO: A dynamical mean-field study , 2006, cond-mat/0612116.

[20]  Eberhard Goering,et al.  Orbital reflectometry of oxide heterostructures. , 2010, Nature materials.

[21]  R. Shulman,et al.  Covalency Effects in KNi F 3 . III. Theoretical Studies , 1963 .

[22]  McMahan,et al.  Calculated effective Hamiltonian for La2CuO4 and solution in the impurity Anderson approximation. , 1988, Physical review. B, Condensed matter.

[23]  M. Zwierzycki,et al.  The Overlapping Muffin-Tin Approximation , 2008, 0808.0105.

[24]  T. Pruschke,et al.  Quantum cluster theories , 2004, cond-mat/0404055.

[25]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.

[26]  Chen,et al.  Out-of-plane orbital characters of intrinsic and doped holes in La2-xSrxCuO4. , 1992, Physical review letters.

[27]  R. Broer,et al.  Theoretical study of the crystal field excitations in CoO , 1998 .

[28]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[29]  W. Nieuwpoort,et al.  Crystal field splitting and born repulsion in KNiF3. Contribution to the panel discussion on ligand field theory , 2009 .

[30]  L. Tjeng,et al.  Temperature and thickness dependence of magnetic moments in NiO epitaxial films , 1998 .

[31]  Ab Initio determination of Cu 3d orbital energies in layered copper oxides , 2011, Scientific reports.

[32]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[33]  M. Haverkort,et al.  dd excitations in three-dimensional q-space: A nonresonant inelastic X-ray scattering study on NiO , 2011 .

[34]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[35]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[36]  G. Sawatzky,et al.  Comparison of x-ray absorption with x-ray photoemission of nickel dihalides and NiO. , 1986, Physical review. B, Condensed matter.

[37]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[38]  Y. Koyama,et al.  Theoretical Fingerprints of Transition Metal L2,3 XANES and ELNES for Lithium Transition Metal Oxides by ab Initio Multiplet Calculations , 2011 .

[39]  USA,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory , 1997, cond-mat/9704231.

[40]  F. Morin Electrical Properties of NiO , 1954 .

[41]  Sawatzky,et al.  Cluster-model calculation of the electronic structure of CuO: A model material for the high-Tc superconductors. , 1990, Physical review. B, Condensed matter.

[42]  Hiroaki Ikeda,et al.  Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions , 2010, Comput. Phys. Commun..

[43]  O. K. Andersen,et al.  Third-generation muffin—tin orbitals , 2002, cond-mat/0203083.

[44]  Thole,et al.  Calculations of magnetic x-ray dichroism in the 3d absorption spectra of rare-earth compounds. , 1988, Physical review. B, Condensed matter.

[45]  G. Wellein,et al.  The kernel polynomial method , 2005, cond-mat/0504627.

[46]  R. Newman,et al.  Optical Properties of Nickel Oxide , 1959 .

[47]  F. Himpsel,et al.  Resonant inelastic scattering at the L edge of Ti in Barium Strontium Titanate by soft X-ray fluorescence spectroscopy , 1997 .

[48]  20pWB-6 Construction of Wannier functions from localized atomiclike orbitals , 2006, cond-mat/0608528.

[49]  W. Klose,et al.  Electronic structure of Chevrel-phase high-critical-field superconductors , 1978 .

[50]  Christensen,et al.  Calculation of Coulomb-interaction parameters for La2CuO4 using a constrained-density-functional approach. , 1989, Physical review. B, Condensed matter.

[51]  Sawatzky,et al.  Nonlocal screening effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds. , 1993, Physical review letters.

[52]  G. Sawatzky,et al.  LMM AUGER-SPECTRA OF CU, ZN, GA, AND GE .1. TRANSITION-PROBABILITIES, TERM SPLITTINGS, AND EFFECTIVE COULOMB INTERACTION , 1977 .

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  Thole,et al.  Strong magnetic dichroism predicted in the M4,5 x-ray absorption spectra of magnetic rare-earth materials. , 1985, Physical review letters.

[55]  M. Haverkort Theory of resonant inelastic x-ray scattering by collective magnetic excitations. , 2009, Physical review letters.

[56]  J. Behler,et al.  Spectral broadening due to long-range Coulomb interactions in the molecular metal TTF-TCNQ , 2007 .

[57]  Fink,et al.  2p absorption spectra of the 3d elements. , 1985, Physical review. B, Condensed matter.

[58]  Y. Koyama,et al.  Relativistic cluster calculation of ligand-field multiplet effects on cation L-2,L-3 x-ray-absorption edges of SrTiO3, NiO, and CaF2 , 2001 .

[59]  Thole,et al.  2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field. , 1990, Physical review. B, Condensed matter.

[60]  Vollhardt,et al.  Correlated lattice fermions in d= , 1989, Physical review letters.

[61]  P. Blaha,et al.  Understanding theL2,3x-ray absorption spectra of early3dtransition elements , 2010 .

[62]  L. Tjeng,et al.  Core-level x-ray photoemission on NiO in the impurity limit , 2000 .

[63]  Peter Krüger,et al.  Multichannel multiple scattering calculation of L 2 , 3 -edge spectra of TiO 2 and SrTiO 3 : Importance of multiplet coupling and band structure , 2010 .

[64]  R. J. Powell,et al.  Optical Properties of NiO and CoO , 1970 .

[65]  J. Tischler,et al.  Nonresonant inelastic x-ray scattering and energy-resolved Wannier function investigation of d-d excitations in NiO and CoO. , 2007, Physical review letters.

[66]  Yukinori Koyama,et al.  First-principles multielectron calculations of Ni L 2 , 3 NEXAFS and ELNES for Li Ni O 2 and related compounds , 2005 .

[67]  Sarma,et al.  Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. , 1996, Physical review. B, Condensed matter.

[68]  A Tanaka,et al.  Controlling orbital moment and spin orientation in CoO layers by strain. , 2005, Physical review letters.

[69]  G. Vankó,et al.  Multiple-element spectrometer for non-resonant inelastic X-ray spectroscopy of electronic excitations. , 2009, Journal of synchrotron radiation.

[70]  V. Anisimov,et al.  NiO: correlated band structure of a charge-transfer insulator. , 2007, Physical review letters.

[71]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[72]  How chemistry controls electron localization in 3d1 perovskites: a Wannier-function study , 2005, cond-mat/0504034.

[73]  Jarrell,et al.  Hubbard model in infinite dimensions: A quantum Monte Carlo study. , 1992, Physical review letters.

[74]  Yukinori Koyama,et al.  First-principles multi-electron calculations for L(2,3) ELNES/XANES of 3d transition metal monoxides. , 2006, Ultramicroscopy.

[75]  O. Gunnarsson,et al.  Electron spectroscopies for Ce compounds in the impurity model , 1983 .

[76]  Eli Stavitski,et al.  Multiplet calculations of L2,3 x-ray absorption near-edge structures for 3d transition-metal compounds , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[77]  I. A. Nekrasov,et al.  Full orbital calculation scheme for materials with strongly correlated electrons , 2004, cond-mat/0407359.

[78]  M. Berciu,et al.  High-spin polaron in lightly doped CuO2 planes. , 2010, Physical review letters.

[79]  L. Tjeng,et al.  Nonresonant inelastic x-ray scattering involving excitonic excitations: the examples of NiO and CoO. , 2007, Physical review letters.

[80]  T. Schmitt,et al.  Two-spinon and orbital excitations of the spin-Peierls system TiOCl. , 2011, Physical review letters.

[81]  A. Tanaka,et al.  Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies , 2010, 1001.5293.

[82]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000 .

[83]  C. de Graaf,et al.  Role of charge transfer configurations in LaMnO3, CaMnO3, and CaFeO3. , 2007, The Journal of chemical physics.

[84]  R. Broer,et al.  Electron correlation effects on the d-d excitations in NiO , 1996 .

[85]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[86]  F. Aryasetiawan,et al.  FREQUENCY-DEPENDENT SCREENED INTERACTION IN NI WITHIN THE RANDOM-PHASE APPROXIMATION , 1998 .

[87]  P. Fulde Wavefunction methods in electronic-structure theory of solids , 2002 .

[88]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[89]  O. Andersen Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd , 1970 .

[90]  E. Zurek,et al.  Muffin-tin orbital Wannier-like functions for insulators and metals. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[91]  F. MattheissL Electronic structure of the 3d transition-metal monoxides. I. Energy-band results. , 1972 .

[92]  Takashi Miyake,et al.  Comparison of Ab initio Low-Energy Models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe , 2009, 0911.3705.

[93]  H. Ikeno,et al.  First principles multiplet calculations of the calcium L2, 3 x-ray absorption spectra of CaO and CaF2 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[94]  Chi-Cheng Lee,et al.  Dynamical linear response of TDDFT with LDA + U functional: Strongly hybridized Frenkel excitons in NiO , 2010 .

[95]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[96]  P. Fulde,et al.  Spin-state transition and spin-polaron physics in cobalt oxide perovskites: ab initio approach based on quantum chemical methods , 2008, 0804.2626.

[97]  John A. Pople,et al.  Nobel Lecture: Quantum chemical models , 1999 .

[98]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.