Solving an enigma: arterial pole development in the zebrafish heart.

[1]  M. Kirby,et al.  Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. , 2005, Developmental biology.

[2]  M. Kirby,et al.  Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field. , 2005, Developmental biology.

[3]  J. Epstein,et al.  A Perspective on the Value of Aquatic Models in Biomedical Research , 2005, Experimental biology and medicine.

[4]  T. Tully,et al.  Essential function of nitric oxide synthase in Drosophila , 2004, Current Biology.

[5]  D. Meyer,et al.  Organization of cardiac chamber progenitors in the zebrafish blastula , 2004, Development.

[6]  M. Ryan,et al.  Learned Social Preference in Zebrafish , 2004, Current Biology.

[7]  J. Icardo,et al.  Differentiation of the cardiac outflow tract components in alevins of the sturgeon Acipenser naccarii (Osteichthyes, Acipenseriformes): Implications for heart evolution , 2004, Journal of morphology.

[8]  Beerend P Hierck,et al.  Development‐related changes in the expression of shear stress responsive genes KLF‐2, ET‐1, and NOS‐3 in the developing cardiovascular system of chicken embryos , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  Michiko Watanabe,et al.  Role of myocardial hypoxia in the remodeling of the embryonic avian cardiac outflow tract. , 2004, Developmental biology.

[10]  G. Satchell,et al.  Physiology and form of fish circulation , 1992, Reviews in Fish Biology and Fisheries.

[11]  M. Fishman,et al.  heart of glass Regulates the Concentric Growth of the Heart in Zebrafish , 2003, Current Biology.

[12]  Michiko Watanabe,et al.  Sculpting the cardiac outflow tract. , 2003, Birth defects research. Part C, Embryo today : reviews.

[13]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[14]  R. Henning,et al.  Protective role of endothelial nitric oxide synthase , 2003, The Journal of pathology.

[15]  J. Icardo,et al.  The conus arteriosus of the adult gilthead seabream (Sparus auratus) , 2002, Journal of anatomy.

[16]  G. Kojda,et al.  Vasoprotection by nitric oxide: mechanisms and therapeutic potential. , 2002, Cardiovascular research.

[17]  C. Cruz,et al.  Myoarchitecture and vasculature of the heart ventricle in some freshwater teleosts , 2002, Journal of anatomy.

[18]  Ralf Dahm,et al.  Zebrafish: A Practical Approach. Edited by C. NÜSSLEIN-VOLHARD and R. DAHM. Oxford University Press. 2002. 322 pages. ISBN 0 19 963808 X. Price £40.00 (paperback). ISBN 0 19 963809 8. Price £80.00 (hardback). , 2003 .

[19]  Karen Birmingham,et al.  the heart , 2002, Nature.

[20]  H. Yost,et al.  Cardiac morphology and blood pressure in the adult zebrafish , 2001, The Anatomical record.

[21]  B. Pelster,et al.  Nitric oxide and vascular reactivity in developing zebrafish, Danio rerio. , 2000, American journal of physiology. Regulatory, integrative and comparative physiology.

[22]  H. Yost,et al.  Structure and function of the developing zebrafish heart , 2000, The Anatomical record.

[23]  Cassandra Wasson,et al.  Cardiovascular , 1999, Blood Purification.

[24]  M. Berlan,et al.  Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death. , 1998, Development.

[25]  S. Kawahara,et al.  Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. , 1998, Analytical chemistry.

[26]  A. Moorman,et al.  Normal development of the outflow tract in the rat. , 1998, Circulation research.

[27]  M. Fishman,et al.  Fashioning the vertebrate heart: earliest embryonic decisions. , 1997, Development.

[28]  M. Moskowitz,et al.  Hypertension in mice lacking the gene for endothelial nitric oxide synthase , 1995, Nature.

[29]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[30]  S. Snyder,et al.  Targeted disruption of the neuronal nitric oxide synthase gene , 1993, Cell.

[31]  M. Fishman,et al.  Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. , 1993, Development.

[32]  D. R. Jones,et al.  1 - The Heart , 1992 .

[33]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[34]  L. Ignarro,et al.  Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Fischman,et al.  Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro , 1982, The Journal of cell biology.

[36]  Zuckerman The life of vertebrates, 3rd edition , 1982 .

[37]  R. Furchgott,et al.  The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine , 1980, Nature.

[38]  L. Hyman,et al.  Hyman's Comparative Vertebrate Anatomy , 1980 .

[39]  Q. Bone,et al.  Biology of Fishes , 1979 .

[40]  M. de la Cruz,et al.  Ultrastructural and experimental evidence of myocardial cell differentiation into connective tissue cells in embryonic chick heart. , 1978, Journal of molecular and cellular cardiology.

[41]  Viktor Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[42]  John Zachary Young,et al.  The Life of Vertebrates , 1951 .

[43]  G. ELLIOT SMITH,et al.  Studies on the Structure and Development of Vertebrates , 1930, Nature.